UNIVERSITA' DI CATANIA

Facoltà di Ingegneria – Istituto di Macchine

CORSO DI MACCHINE A. A. 1998/1999

PROVA D'ESAME 26 – 07 - 1999

Esercizio 1

Si esegua il progetto di massima di un ciclo Bryton-Joule per un turbomotore a gas per la produzione di energia elettrica della potenza utile di 240 MW. Le specifiche di progetto prevedono un'architettura ad asse singolo e l'utilizzo della tecnica della ricombustione. Ottimizzare inoltre la pressione di ricombustione qualora l'unità turbogas debba essere impiegata in un impianto combinato per la produzione di energia.

Descrizione	Valore	Unità
Rapporto di compressione	35	-
Rendimento politropico (turbine e compressori)	0.89	-
Temperatura massima di ciclo	1500	K
Perdita di carico I combustore	0.03	-
Perdita di carico II combustore	0.05	-
Pressione di scarico dei gas combusti	1.04	bar

Determinare quindi:

- 1. Le coordinate termodinamiche del ciclo;
- 2. Il lavoro netto prodotto;
- 3. La portata massica di aria da elaborare;
- 4. Il rendimento dell'impianto.

Esercizio 2

Si esegua il dimensionamento del diametro medio di una turbina Curtis a due salti di velocità quando questa debba elaborare una portata massica di vapore pari a 159 kg / s nelle condizioni di p_0 =180 bar e t_0 =530 °C, t_0 =0 m/s. La pressione di scarico della turbina risulta essere di 120 bar e la turbomacchina presenta le seguenti caratteristiche:

- Angolo di uscita del distributore pari a 20°;
- Funzionamento in condizioni di massimo rendimento;
- Altezza delle pale all'uscita del distributore paria 0.03 d;
- Palettatura mobile e del raddrizzatore simmetrica;
- Velocità di rotazione 3000 r / min.

Tracciare inoltre i triangoli di velocità e calcolare la potenza utile e il rendimento della turbina, assumendo i seguenti coefficienti di perdita: distributore ϕ =0.96, I girante ψ =0.9, raddrizzatore ϕ '=0.9, II girante ψ '=0.9, k_1 =1.06 10⁻³, k_2 ₁=0.6 $(l_1)^{1/2}$, k_2 ₂=0.6 $(l_2)^{1/2}$