UNIVERSITA' DI CATANIA

Facoltà di Ingegneria

Dipartimento di Ingegneria Industriale e Meccanica

CORSO DI MACCHINE A. A. 1999/2000

PROVA SCRITTA D'ESAME 28 – 02 – 2001

Esercizio 1

Una macchina espande 3 kg/s di gas da 10 bar e 500°C sino ad 1 bar, secondo una politropica con esponente m=1.5. Si conosce L_w =62 kJ/kg e si vuol sapere la potenza interna della macchina, nonché, eventualmente, se questa scambia calore con l'eterno e quanto complessivamente. (c_p =1050 J/kg/K, R=287 J/kg/K, energie cinetiche trascurabili all'ingresso e all'uscita).

Esercizio 2

Un compressore volumetrico a stantuffo monostadio avente cilindrata pari a 1000 cm³ e grado di spazio morto μ =0.1, aspira aria dall'ambiente (p_1 =1 bar, T_1 =300 K) e funziona in condizioni di regime con β =5, n=2000 r/min e η_m =0.97. Assumendo, in prima approssimazione, condizioni di funzionamento ideali in cui η_{ϕ} = η_{τ} =1, δ_1 = δ_2 =0, m=m'=1.4, determinare la portata e la potenza in condizioni di regime. Volendo dimezzare la portata mandata, si provvede a regolare il compressore in uno dei seguenti modi:

- 1. Variazione del numero di giri. Determinare il nuovo numero di giri di funzionamento e la nuova potenza;
- 2. Strozzamento dell'aspirazione. Determinare la nuova pressione di aspirazione e la potenza assorbita.
- 3. Riflusso dalla mandata all'ambiente. Confrontare la potenza assorbita in tal caso con quella richiesta nel caso 2.
- 4. Addizione di una capacità supplementare allo spazio morto. Determinare il volume di tale capacità e la nuova potenza assorbita.

Esercizio 3

Uno stadio di turbina a gas multipla assiale è caratterizzato da un diametro medio d_m =0.5 m. L'altezza delle palette mobili all'ingresso della girante è l_1 =4 cm. Lo stadio funziona con triangoli simmetrici e con un rapporto u/c_1 =cos α_1 , con α_1 =25°. Le condizioni del flusso all'ingresso in girante sono p_1 =29 bar e c_1 =280 m/s. Sapendo che la pressione in uscita girante è p_2 =24 bar e che ψ =0.94, determinare la temperatura in ingresso girante T_1 , la potenza interna dell'elemento P_1 e l'altezza delle palette in uscita girante l_2 trascurando l'ingombro delle palette stesse.