DYNAMICS OF SERIAL
ROBOTIC
MANIPULATORS




. NOMENCLATURE AND BASIC
DEFINITION

We consider here a mechanical system composed of r rigid bodies
and denote:

m M, 66 1nertia dyads of the ith body.
m Wi 6 x 6 angular-velocity dyad of the ith body.

MiE[g m?l] WiE[%i g i=1,2...r
Where:
1 1s 3x3 identity matrix
O is 3x3 zero matrix

Q .is the angular velocity matrix of the zth body
I.is the inertia matrix of the 7th body

Dynamics of serial robotic manipulators



. NOMENCLATURE AND BASIC
DEFINITION

Furthermore we define:
m w” working wrench exerted on the /th body

= w’,nonworking constraint wrench exerted on the /th body

m t; twist of the /th body

m p 6-D momentum screw

w C
O L c _ |M L W, L Ii(‘)i]
w ‘_[le W= fe t‘_[éi] B = mye;

Whetre ;

= n moment acting on /th body

m f force acting on 7/th body
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| NEWTON-EULER EQUATIONS
OF THE ITH RIGID BODY

Clearly, from the definitions of M, p.. and t,we have
u; = M;t;
Deriving, we obtain:
W; = Mt; + Wi, = Mit; + WMt

Recalling the Newton-Euler equations for a rigid body:

[[w; = —w; X ;w; + n%; + n;

m;&; = £V + ff

which can be written in compact form using the foregoing
definitions, we obtain the Newton-Euler equations of the 7th body
in the form:

Miti = _WiMiti ~+ leI/ ~+ WlC
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

The Fuler-Lagrange dynamical equations of a mechanical
system are now recalled, as pertaining to serial
manipulators. Thus, the mechanical system at hand has #
degrees of freedom, 1ts » independent generalized
coordinates being the 7 joint variables, which are stored in
the #-dimensional vector 0. We thus have:

d (oT\ (0T
dt (aé))_(%) =

where T is a scalar function denoting the kinetic energy of

the system and ¢ is the #-dimensional vector of generalized
force.
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

We can decompose ¢ into two parts, ¢, and @, the
former arising from I and termed the conservative
force of the system; the latter is the nonconservative

: oV
force. That is: ¢, = ”

The above Euler-Lagrange equations thus becoming:

d /oL oL
dt\ 96 ae_¢“

Where L 1s the Lagrangian of the system, defined as:
L=T-V
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

Moreover, the kinetic energy of the system is given by the
sum of all the kinetic energies of rlinks. The kinetic energy
of the rigid body in term of generalized variables is:

r r
1 T
T =le —_ Eztl Miti
L L

whereas the vector of nonconservative generahzed forces
is given by: Oy = — — —

As denotes []* the active power and the [P power
dissipated in the system
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

The wrench w/ is decomposed into two parts: w;! active
wrench supplied by the actuators and w.” dissipative wrench
arises from viscous and Coulomb friction

Thus, the power supplied to the zth link 1s readily computed

as:

[ =Wt L7 = W)t
Similar to the kinetic energy, then, the power supplied to the

overall system is simply the sum of the individual powers
supplied to each link, and expressed as:

1% = 21117, [1° = 1117,
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

Further definitions are now introduced:
m t manipulator twist

® pu manipulator momentum

m w¢ manipulator constraint wrench
m w! manipulator active wrench
m w” manipulator dissipative wrench
t - Wi wil Wi
t; K> ws wi w?
t= U= wé=|" wiad=| " wl =] -
t, | yis W Wi WP,
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

Additionally, the 6#x6# matrices of manipulator mass
M and manipulator angular velocity W are also
introduced below:

M = diag (M{,M,, ... ... ,M,,)

W = diag (W, W,, ... ... , W,)
From this definitions we have:

u =Mt
[t = Mt + WMt
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

With the foregoing definitions, then, the kinetic
energy of the manipulator takes on a simple form,

namely,

1 1
T=-t'Mt= -t'
2 2 H

Which is a quadratic form in the system twist. Since
the twist, on the other hand, 1s a linear function of the

vector @ of joint rates, the kinetic energy turns out to
be a quadratic form in the vector of joint rates.
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

Motreover, we will assume that this form 1is

homogeneous in 0 -
1. .

Notice that the above assumption implies that the
base of the robot is fixed to an inertial base, and
hence, when all joints are locked, the kinetic energy of
the robot vanishes.

[t is apparent that: 1(0) = — (T)
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

Furthermore, the FEuler-Lagrange equations can be

written in the form:
d (T\ oT oV _
dt\o6/ 00 00 Pn

The partial derivatives appearing in the foregoing

equation take the forms derived below:

ar_ 1(0)6
. A0
andhence: - (55) = 1(8)0 + i(6,6)6
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

We express the kinetic energy in the form:
1 .\ T

Where p(6,0)is the generalized momentum of the
manipulator, defined as:

p(6,0) =1(6)0

Jdr 1(0dp Tg
00 2\00
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THE EULER-LAGRANGE EQUATIONS
OF SERIAL MANIPULATORS

The Fuler-Lagrange equations thus taking on the

alternative form:
T

. .. .. 1fe(18)1 . ov
1(9)94-1(9,9)—5 ge) H"‘%:qﬁn
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' EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

Consider the manipulator of Figure with links designed so
that their mass centers C,, C, C; are located at the
midpoints of segments O,0,, O,0;, and O;P respectively.
Moreover, the sth link has a mass 7, and a centroidal
moment of inertia in a direction normal to the plane of
motion I, while the joints are actuated by motors
delivering torques 7,, 7,, and 7; the lubricant of the joints
producing dissipative torques that we will neglect in this
model. Under the assumption that gravity acts in the
direction of —Y, find the associated Euler-Lagrange
equations.
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EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

SOLUTION:

All vectors

w, = 04
w, = 04
w3= 04

below are 2-D,
angular velocities of the
links we, for 7 =1, 2, 3, being:

introduced
the scalar

_82

+ 0, + 05




| EULER-LAGRANGE EQUATIONS

OF A PLANAR ROBOT
Moreover, the velocities of the mass centers are:
1.
él — = 81 Ea1

2
. 1.
C, = HlEal + 5(91 —+ Hz)Eaz

C3 — HlEal + (81 + Hz)Eaz + 5(81 + 82 + 03)Ea3

The kinetic energy then becoming:

3
T = 1Z:(m-llc'-ll2 + Lw?))
2 l l l l
1
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| EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

The squared magnitudes of the mass-center velocities
are now computed using the expressions derived above.

After simplifications, these yield
1 .2

1€, 11% = Za1231

”(:2”2 = a12812 + Zazz (012 + 29192 + 922) + a;a, Cos 92 (912 + 9192)
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| EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

The kinetic energy of the whole manipulator thus
becomes:

T = 5(111912 + 21156, 65 + 20530105 + Ly6,° + 2135605°)

with coefficients L, for;=1, 2, 3, and j = 1 to 3 being the
distinct entries of the 3 X 3 matrix of generalized inertia of
the system. These entries are given below:

1 1 1
Li=L+1L+1;+ Zm1a12 + m, <a12 + Zazz + a1a202> + mg <a12 + ay? +Za32 + 2a,a;3¢, + ajascys + a2a3c3>
1,
m, Eaz + a,a,c,

113 = 13 + E(Eag + a,103Cy3 + a,asCs

1
112=12+13 +§

1
— [m3 <2a§ — Ea% + 2a,a,5c, + ayazcy3 + 2a2a3c3>]
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| EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

1 2 2 1 2
122 — 12 + 13 +Zm2a2 + m3 az +Za3 + a2a3C3

1
I3 =13 +Em3(a§ + ayascs)
I33 = I3 +—m3a3
33 3 4m3a3

where: ¢; = cos Qi ¢cCyj = COS(HL' + 9]')

Furthermore, the potential energy of the manipulator is

computed as the sum of the individual link potential energies :

V

1 1
— Emlgalsenel +m,g [alsen91 + EazSen(91 + 92)]

1
+ msg [alsenel + a,sen (6, + 0,) + 7 dssen (6, + 6, + 83)1
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BEULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

While the total power delivered to the manipulator takes
the form:

H a Tlgl + ngz + T393

We now proceed to compute the various terms:

11'1 = —mzalazszéz — My [Zalazszéz + a1a3523(92 + 93) + a2a35393]
. 1 ) ) ) : :

I, = E{—mzalazszez — ms [2a1a25292 + a1a3523(92 + 03) + a2a3s393]}
. 1 . : :

112 — _Em3 [a1a3$23(92 + 93) + a2a35383]

12.2 = —m3a2a35393

I3 = —Em3a2a3s393

13.3 =0
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| EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

We have then:

N 111601 + 1150, + 11305
IG — h — 11261 + 12262 + 12383
11301 + L5360, + I3305.
whose components are readily calculated as:

hy
= —[myaya,s, + m3(2a,a,s; + a,a35,3)]610, — m3z(a,ass,3 + a,a3s3)6165

3 [myaia;s, + mg(2a,a,s, + aya;35,3)]6% — m3(aya3S,3)0,65 — §m3(a1a3sz3)9§
1 .. 1 .. ..
h, = 5 [mya,a,s; + mz(2a,a;,8; + a;a35,3)]610; — Emg(a1a353 + a,0a353)0165 — m3a,a3s36,65 — Em3a2a3s39§
1 .. .. 1 ..
hs = _Em3a1‘135239193 - Em3(a1a3sz3 + a,a353)616;5 — Em3a2a3539293

Dynamics of serial robotic manipulators



| EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT
010

— I/ . : ’ . "
5 = I'1ts entries being denoted by [ i This matrix,

in component form, 1s given by :
0 L1261+ li2205 + L3203 L1361 + L2365 + L13363]
I' = |0 L2261 4 1220, + L3205 15361 + Ipp 30, + 153363
0 113,291 + 123,292 + 133,293 113,391 + 123,392 + 133,393_

with the shorthand notation I, indicating the partial
detivative of [;with respect to 0,. As the reader can
verity, these entries are given as:

[i; =0
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| EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

o1 . )
I __
I, = —[mya,a,s, + mz(2a,a,s; + a;a3s;3)]0; — 5 [mya,a,s, +m3(2a,a;,s; + a;a35,3)]60; — §m3a1a352393
, . . )
I13 = —mg(aa3sy3 + aazs;)f; — Ems(a1a3523 + 2a,a353)6, — §m3(a1a3523 + a,a3s3)03
Iél = 0
, .
I, = _Emzaﬂzsz + m3(2a,a,;s, + a;a3s,3)]6;
, . ) .
I3 = _Emg (a1a;S,3 + 2a,0a353)0; — mza,azsz0, — §m3a2a35393
15,)1 = O
, .
I3, = _§m3a1a352391
, . )
I33 = _Ems (a;a3S23 + a,a3s3)0; — Em3a2a3s392
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| EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

Now, we define the 3-dimensional vector y below:
[a(10)]
T

its three components being:

)/1 = 0 . . .

V2 = —[maaia;8, + m3(2a1a,5, + a103523)107 — [Mpa1a55; + M3 (20,058, + a403523)10705 — M3a1a35,36765
V3

= —m3(a1a,s;3 + a,0353)07 — M3(a1a35,3 + 20,35,3 + 2a,a353)07 05 — m3(a,a35,3 + a,a353)6,65

— M3a,035305 — M30,05556,63
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| EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

We now turn to the computation of the partial
derivatives of the potential energy:

av 1 1 1
~- =57mgaic; + myg | 101 +5aC12 |+ M3g | a1C1 + ApC1p +5A2C123
00, 2 2 2

v 1 1
36, = 7 M29% T m3g | azC12 +5a3C123

2
av 1
6_93 = Emsgascus
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| EULER-LAGRANGE EQUATIONS
OF A PLANAR ROBOT

The Euler-Lagrange equations thus reduce to:

. . . 1 1 1
[11601 + 11,0, + 11365 + hy — Eh + §m1ga1c1 +myg <a1c1 + §a2C12>

1
+mzg (a1C1 + ayC1p t+ §a2C123> =T

. . . 1 1 1
[1207 + 11,0, + 1,303 + hy — EVZ + Engaz + mszg <a2C12 + §a3C123>

. . . 1 1
I1361 + 1,30, + 13305 + hy — 573 + Em3ga3C123 = T3
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