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RECURSIVE INVERSE DYNAMICS

We assume at the outset that the manipulator under study

is of the serial type with n+1 links including the base link

and n joints of either the revolute or the prismatic type.

The underlying algorithm consists of two steps:

 Kinematic Computations: required to determine the

twists of all the links and their time derivatives in terms

of θ,  θ,  θ

 Dynamic Computations: required to determine both

the constraint and the external wrenches.

Henceforth, revolute joints are referred to as R, prismatic

joints as P.
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS
We will use the Denavit-Hartenberg (DH) notation.

Moreover, every 3-D vector-component transfer from

the ℱi frame to the frame ℱi +1 requires a

multiplication by Qi
T. Likewise, every component

transfer from the frame ℱi +1 to the ℱi frame requires

a multiplication by Qi.

If we have: 𝑟𝑖 = 𝑟1, 𝑟2, 𝑟3 and we need:[ri]i+1

then we proceed as follows:

𝑟 𝑖+1 = 𝑄𝑖
𝑇 𝑟 𝑖
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS
If we recall the form of Qi we then have:

𝑟 𝑖+1 =

𝑐𝑜𝑠𝜃𝑖 𝑠𝑒𝑛𝜃𝑖 0
−𝜆𝑖𝑠𝑖𝑛𝜃𝑖 𝜆𝑖𝑐𝑜𝑠𝜃𝑖 𝜇𝑖
𝜇𝑖𝑠𝑖𝑛𝜃𝑖 −𝜇𝑖𝑐𝑜𝑠𝜃𝑖 𝜆𝑖

𝑟1
𝑟2
𝑟3

=

𝑟1𝑐𝑜𝑠𝜃𝑖 + 𝑟2𝑐𝑜𝑠𝜃𝑖
−𝜆𝑖𝑟 + 𝜇𝑖𝑟3
𝜇𝑖𝑟 + 𝜆𝑖𝑟3

Where: 𝜆𝑖 = 𝑐𝑜𝑠𝛼𝑖 and 𝜇𝑖 = 𝑠𝑒𝑛𝛼𝑖
While:   𝑟 = 𝑟1𝑠𝑖𝑛𝜃𝑖 − 𝑟2𝑐𝑜𝑠𝜃𝑖
Likewise, if we have 𝑣 𝑖+1 = 𝑣1, 𝑣2, 𝑣3

𝑇 and we need

[v]i, we use the component transformation given below:

𝑣 𝑖 =

cos 𝜃𝑖 −𝜆𝑖𝑠𝑖𝑛𝜃𝑖 𝜇𝑖 sin 𝜃𝑖
sin 𝜃𝑖 𝜆𝑖𝑐𝑜𝑠𝜃𝑖 −𝜇𝑖𝑐𝑜𝑠𝜃𝑖
0 −𝜇𝑖 𝜆𝑖

𝑣1
𝑣2
𝑣3

=

𝑣1𝑐𝑜𝑠𝜃𝑖 + 𝑣𝑠𝑖𝑛𝜃𝑖
𝑣1𝑠𝑖𝑛𝜃𝑖 + 𝑣𝑐𝑜𝑠𝜃𝑖

𝑣2𝜇𝑖 + 𝑣3𝜆𝑖
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS
It is now apparent that every coordinate

transformation between successive frames, whether

forward or backward, requires eight multiplications

and four additions.

We indicate the units of multiplications and additions

with M and A, respectively.
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS

The angular velocity and acceleration of the ith link are

computed recursively as follows:

𝜔𝑖 =  
𝜔𝑖−1 +  𝜃𝑖𝑒𝑖 , 𝑖𝑡ℎ − 𝑗𝑜𝑖𝑛𝑡 𝑅
𝜔𝑖 𝑖𝑡ℎ − 𝑗𝑜𝑖𝑛𝑡 𝑃

 𝜔𝑖 =  
 𝜔𝑖−1 +𝜔𝑖−1 ×  𝜃𝑖𝑒𝑖 +  𝜃𝑖𝑒𝑖 , 𝑖𝑡ℎ − 𝑗𝑜𝑖𝑛𝑡 𝑅

 𝜔𝑖−1 𝑖𝑡ℎ − 𝑗𝑜𝑖𝑛𝑡 𝑃

for i = 1, 2, . . . , n, where ω0 and  𝜔0 are the angular

velocity and angular acceleration of the base link.

This equations are valid in any coordinate frame.
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS
In view of outwards recursive nature of the kinematic relations

it is apparent that a transfer from ℱi to ℱi+1 coordinate is

needed, which can be accomplished by multiplying either ei or

any other vector withe (i-1) subscript by matrix Qi
T.

Hence, the angular velocities and accelerations are computed

recursively, as indicated below:

𝜔𝑖 =  
𝑄𝑖
𝑇 𝜔𝑖−1 +  𝜃𝑖𝑒𝑖 , 𝑖𝑡ℎ − 𝑗𝑜𝑖𝑛𝑡 𝑅

𝑄𝑖
𝑇 𝑖𝑡ℎ − 𝑗𝑜𝑖𝑛𝑡 𝑃

 𝜔𝑖 =  
𝑄𝑖
𝑇(  𝜔𝑖−1 + 𝜔𝑖−1 ×  𝜃𝑖𝑒𝑖 +  𝜃𝑖𝑒𝑖 𝑖𝑡ℎ − 𝑗𝑜𝑖𝑛𝑡 𝑅

𝑄𝑖
𝑇  𝜔𝑖−1 𝑖𝑡ℎ − 𝑗𝑜𝑖𝑛𝑡 𝑅
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS
If the base link is an inertial frame, then:

𝜔0 = 0  𝜔0 = 0

Furthermore, in order to determine the number of

operations required to calculate  𝜔𝑖 in ℱi+1 when

 𝜔𝑖−1 is available in ℱi, we note that:

𝜔𝑖−1 ×  𝜃𝑖𝑒𝑖 i
=

 𝜃𝑖𝜔𝑦

 −𝜃𝑖𝜔𝑥

0
Where wx,wy e wz are the wi-1 components in ℱi-1
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS
Furthermore, let ci be the position vector of Ci, the

mass center of the ith link, ρi being the vector directed

from Oi to Ci, as shown in Figures
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS
The position vectors of two successive mass centers thus

observe the relationships:

 if the ith joint is R:

𝛿𝑖−1 = 𝑎𝑖−1 − 𝜌𝑖−1 𝑐𝑖 = 𝑐𝑖−1 + 𝛿𝑖−1 + 𝜌𝑖
 if the ith joint is P:

𝛿𝑖−1 = 𝑑𝑖−1 − 𝜌𝑖−1 𝑐𝑖 = 𝑐𝑖−1 + 𝛿𝑖−1 + 𝑏𝑖𝑒𝑖 + 𝜌𝑖
Note that in the presence of a revolute pair at the ith join, the

difference 𝑎𝑖−1 − 𝜌𝑖−1 is constant in ℱi. Likewise, in the

presence of a prismatic pair at the same joint, the difference

𝑑𝑖−1 − 𝜌𝑖−1 is constant in ℱi.
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS
We derive the corresponding relations between the velocities

and accelerations of the mass centers of links i - 1 and i,

namely,

 if the ith joint is R:
 𝑐𝑖 =  𝑐𝑖−1 + 𝜔𝑖−1 × 𝛿𝑖−1 +𝜔𝑖 × 𝜌𝑖

 𝑐𝑖 =  𝑐𝑖−1 +  𝜔𝑖−1 × 𝛿𝑖−1 +𝜔𝑖−1 × (𝜔𝑖−1× 𝛿𝑖−1) +  𝜔𝑖 × 𝜌𝑖 +
𝜔𝑖 ×(𝜔𝑖 × 𝜌𝑖)

 if the ith joint is R:

𝑢𝑖 = 𝛿𝑖−1 + 𝜌𝑖 + 𝑏𝑖𝑒𝑖 𝑣𝑖 = 𝜔𝑖 × 𝑢𝑖

 𝑐𝑖 =  𝑐𝑖−1 + 𝑣𝑖 +  𝑏𝑖𝑒𝑖
 𝑐𝑖 =  𝑐𝑖−1 +  𝜔𝑖 × 𝑢𝑖 +𝜔𝑖 × (𝑣𝑖 + 2  𝑏𝑖𝑒𝑖 +  𝑏𝑖𝑒𝑖)
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KINEMATICS COMPUTATIONS: 

OUTWARD RECURSIONS
For i = 1, 2, . . . , n, where  𝑐0 and  𝑐0 are the velocity and

acceleration of the mass center of the base link.

If the latter is an inertial frame, then

𝜔0 = 0  𝜔0 = 0  𝑐0 = 0  𝑐0 = 0

The expressions above are invariant. They hold in any coordinate

frame, as long as all vectors involved are expressed ℱi in that

frame.

However, we have vectors in the frame, and hence a coordinate

trasformation is needed. This coordinate trasformation is taken

into account in the following algorithm whereby the logical

variable R is true if the ith joint is R; otherwise is false
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ALGORITHM – OUTWARD 

RECURSION
Read 𝑄𝑖 0

𝑛−1, 𝑐0, 𝜔0,  𝑐0,  𝜔0,  𝑐0, 𝜌𝑖 1
𝑛, 𝛿1 0

𝑛−1

For i=1 till n step 1 do:

Update Qi

if R then:

𝑐𝑖 ← 𝑄𝑖
𝑇(𝑐𝑖−1 + 𝛿𝑖−1) + 𝜌𝑖

𝜔𝑖 ← 𝑄𝑖
𝑇 𝜔𝑖−1 +  𝜃𝑖𝑒𝑖

𝑢𝑖−1 ← 𝜔𝑖−1 × 𝛿𝑖−1
𝑣𝑖 ← 𝜔𝑖 × 𝜌𝑖
 𝑐𝑖 ← 𝑄𝑖

𝑇  𝑐𝑖−1 + 𝑢𝑖−1 𝑣𝑖
 𝜔𝑖 ← 𝑄𝑖

𝑇  𝜔𝑖−1 +𝜔𝑖−1 +  𝜃𝑖𝑒𝑖 +  𝜃𝑖𝑒𝑖
 𝑐𝑖 ← 𝑄𝑖

𝑇  𝑐𝑖−1 +  𝜔𝑖−1 × 𝛿𝑖−1 + 𝜔𝑖−1 × 𝑢𝑖−1 +  𝜔𝑖 × 𝜌𝑖 + 𝜔𝑖 × 𝑣𝑖
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ALGORITHM – OUTWARD 

RECURSION
Else
𝑢𝑖 ← 𝑄𝑖

𝑇𝛿𝑖−1 + 𝜌𝑖 + 𝑏𝑖𝑒𝑖
𝑐𝑖 ← 𝑄𝑖

𝑇𝑐𝑖−1 + 𝑢𝑖
𝜔𝑖 ← 𝑄𝑖

𝑇𝜔𝑖−1

𝑣𝑖 ← 𝜔𝑖 × 𝑢𝑖
𝑤𝑖 ←  𝑏𝑖𝑒𝑖
 𝑐𝑖 ← 𝑄𝑖

𝑇𝑐𝑖−1 + 𝑣𝑖 +𝑤𝑖

 𝜔𝑖 ← 𝑄𝑖
𝑇  𝜔𝑖−1

 𝑐𝑖 ← 𝑄𝑖
𝑇  𝑐𝑖−1 +  𝜔𝑖 × 𝑢𝑖 +𝜔𝑖 × 𝑣𝑖 +𝑤𝑖 +𝑤𝑖 +  𝑏𝑖𝑒𝑖

Endif

Enddo
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ALGORITHM – OUTWARD 

RECURSION
If, moreover, we take into account that the cross product 

of two arbitrary vectors requires 6M and 3A, we then have 

the operation counts given below:
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R joint P joint

M A M A

Qi 4 0 4 0

ci 8 10 16 15

ωi 8 5 8 4

 𝑐𝑖 20 16 14 11

 𝜔𝑖 10 7 8 4

 𝑐𝑖 32 28 20 19



DYNAMICS COMPUTATIONS: 

INWARD RECURSIONS
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Free-body diagram of the ith link



DYNAMICS COMPUTATIONS: 

INWARD RECURSIONS
A free-body diagram of the EE appears in figure. Note

that the link is acted upon by a nonworking constraint

wrench, exerted though the nth pair, and a working

wrench; the latter involves both active and dissipative

forces and moments. Although dissipative forces and

moment are difficult to model.

Since this forces and moment depend only on joint

variable and joint rates, the can be calculated one the

cinematic variable are known.
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DYNAMICS COMPUTATIONS: 

INWARD RECURSIONS
Hence, the force and the moment that (i-1)st link excert on th

ith link throught the ith joint produce non working constraint

and active wrences.

That is for a revolute pair:

𝑛𝑖
𝑃 =

𝑛𝑖
𝑥

𝑛𝑖
𝑦

𝜏𝑖

𝑓𝑖
𝑃 =

𝑓𝑖
𝑥

𝑓𝑖
𝑦

𝑓𝑖
𝑧

in which ni
P and fi

P are the nonzero ℱi-components of the

nonworking constraint moment exerted by the (i −1)st link on

the ith link; obviously, this moment lies in a plane

perpendicular to Zi, whereas τi is the active torque applied by

the motor at the said joint.
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DYNAMICS COMPUTATIONS: 

INWARD RECURSIONS
For a prismatic pair, one has:

𝑛𝑖
𝑃 =

𝑛𝑖
𝑥

𝑛𝑖
𝑦

𝑛𝑖
𝑧

𝑓𝑖
𝑃 =

𝑓𝑖
𝑥

𝑓𝑖
𝑦

𝜏𝑖
Whre vector ni

P contains only nonworking constraint torques,

while τi is now the active force exerted by ith motor in the Zi

direction, fi
x and fi

y being the nonzero ℱi-components of the

nonworking constraint force excerted by the ith joint on the

ith link, which is perpendicular to the Zi axis.
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DYNAMICS COMPUTATIONS: 

INWARD RECURSIONS

Free-body diagram of the end-effector
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DYNAMICS COMPUTATIONS: 

INWARD RECURSIONS
From the figure above , the Newton-Euler equations of the

end-effector are:

𝑓𝑛
𝑃 = 𝑚𝑛  𝑐𝑛 − 𝑓

𝑛𝑖
𝑃 = 𝐼𝑛  𝜔𝑛 + 𝜔𝑛 × 𝐼𝑛𝜔𝑛 − 𝑛 + 𝜌𝑛 × 𝑓𝑛

𝑃

where f and n are the external force and moment, the former

being applied at the mass center of the EE. The Newton-

Euler equations for the remaining links are derived based on

the free-body diagram namely,

𝑓𝑖
𝑃 = 𝑚𝑖  𝑐𝑖 − 𝑓𝑖+1

𝑃

𝑛𝑖
𝑃 = 𝐼𝑖  𝜔𝑖 + 𝜔𝑖 × 𝐼𝑖𝜔𝑖 + 𝑛𝑖+1

𝑃 + 𝑎𝑖 − 𝜌𝑖 × 𝑓𝑖+1
𝑃 + 𝜌𝑖 × 𝑓𝑖

𝑃
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DYNAMICS COMPUTATIONS: 

INWARD RECURSIONS
The vectors nP

i and f P
i indicate the couples and active

forces, denoted by ti . In fact, if the i-th joint is rotationally

has:

𝜏𝑖 = 𝑒𝑖
𝑇𝑛𝑖

𝑃

if the i-th joint is prismatic then the actuator force reduces to:

𝜏𝑖 = 𝑒𝑖
𝑇𝑓𝑖

𝑃

The foregoing relations are written in invariant form. In order

to perform the computations involved, transformations that

transfer coordinates between two successive frame are

required. In taking these coordinate transformations into

account, we derive the Newton-Euler algorithm from the

above equation.
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ALGORITHM – INWARD 

RECURSIONS𝑓𝑛
𝑃 ← 𝑚𝑛  𝑐𝑛 − 𝑓

𝑛𝑛
𝑃 ← 𝐼𝑛  𝜔𝑛 + 𝜔𝑛 × 𝐼𝑛𝜔𝑛 − 𝑛 + 𝜌𝑛 × 𝑓𝑛

𝑃

If R then

𝜏𝑛 ← 𝑛𝑛
𝑃

𝑧

Else

𝜏𝑛 ← 𝑓𝑛
𝑃

𝑧

For i=n-1 till 1 step-1  do

𝜙𝑖+1 ← 𝑄𝑖𝑓𝑖+1
𝑃

𝑓𝑖
𝑃 ← 𝑚𝑖  𝑐𝑖 − 𝜙𝑖

𝑛𝑖
𝑃 ← 𝐼𝑖  𝜔𝑖 + 𝜔𝑖 × 𝐼𝑖𝜔𝑖 + 𝜌𝑖 × 𝑓𝑖

𝑃 + 𝑄𝑖𝑛𝑖−1
𝑃 + (𝑎𝑖 − 𝜌𝑖) × 𝑄𝑖𝑓𝑖+1

𝑃

If R then

𝜏𝑖 ← 𝑛𝑖
𝑃

𝑧

else

𝜏𝑖 ← 𝑓𝑖
𝑃

𝑧

enddo
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COMPLEXITY OF DYNAMICS 

COMPUTATIONS
A summary of all the calculations is shown in Table:

The total number of additions and moltiplications For Md can be 

calculated with the following formulas:

𝑀𝑑 = 55𝑛 − 22 𝐴𝑑 = 44𝑛 − 14
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Row # M A

1 3 3

2 30 27

5 8(n-1) 4(n-1)

6 3(n-1) 3(n-1)

7 44(n-1) 37(n-1)

Total 55n-22 44n-14


