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THE NATURAL ORTHOGONAL 

COMPLEMENT
The Newton-Euler equations obtained from the study

of a serial manipulator does not constitute a

mathematical model because they can not use recursive

relations.

We want to determine a model that describes the status

assumed by the system as a function of the generalized

external forces applied.

We want to derive the mathematical model for a serial

manipulator in function of its kinematic structure and

its inertial properties.
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COMPLEMENT

We recall the Newton-Euler equations of the ith body in 6-

D form:

𝐌i  𝐭i = −𝐖i𝐌i𝐭i +𝐰i
w +𝐰i

C i=1,2,….,n 

Where:        𝐭 =

𝐭1
𝐭2
.
.
.
𝐭n

𝐰C =

𝐰C
1

𝐰C
2

.

.

.
𝐰C

n

𝐌 = diag 𝐌1, 𝐌2, …… ,𝐌n 𝐖 = diag (𝐖1,𝐖2, …… ,𝐖n)

Natural Orthogonal Complement in Robot Dynamics



THE NATURAL ORTHOGONAL 

COMPLEMENT
If ww is decomposed into its active (wA),

gravitational(wG)and dissipative(wD) parts, the

foregoing equation takes the form:

𝐌  𝐭 = −𝐖𝐌𝐭 +𝐰C +𝐰A +𝐰G +𝐰D

Since the gravity acts at the mass centre of a body, the

gravity wrench wi
G acting on the ith link takes the

form:

𝒘𝒊
𝑮 =

𝟎
mi 𝐠
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𝐌  𝐭 = −𝐖𝐌𝐭 +𝐰C +𝐰A +𝐰G +𝐰D

The mathematical model displayed in this equation

represents the uncoupled Newton-Euler equations of

the overall manipulator.

The following steps of this derivation consists in

representing the coupling between every two

consecutive links as a linear homogeneous system of

algebraic equations on the link twist.

We note that all kinematic pairs allow a relative 1 dof

motion between the coupled bodies.
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We can expres the kinematic constraints of the system

in linear homogeneous form in the 6n-D vector of 

manipulator twist, namely

𝐊𝐭 = 𝟎
Furthermore, since the nonworking constraint wrench

wC produces no work on the manipulator, its sole

function being to keep the links together, the power

developed by this wrench is zero:

𝐭T𝐰C = 𝟎
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If we do the transpose of equation Kt=0 and multiply 

by a vector λ 6n-D, we obtain:

𝐭T𝐊T𝛌 = 0

it is apparent that wC takes the form

𝐰c = 𝐊𝐓𝛌

Then we represent the twist as a linear transformation

of the independent generalized speeds

𝐭 = 𝐓  𝜽
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Substituting this into the equation KT=0 we get:

𝐊𝐓  𝜽 = 𝟎

Since the degree of freedom of the manipulator is n,

the n  𝜃
1

𝑛
generalized velocity can be assigned

arbitrarily.

The above equation must still be verified: for this to

happen it is necessary that KT=0

Therefore, we can say that T is the orthogonal

complement of K.
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We replace the equation of Euler-Neton the following

relationship, which originated from the foregoing

considerations
 𝐭 = 𝐓  𝜽 + 𝐓  𝜽

Premultiplying for the matrix TT, we reduce the system

of n independent equations free from the forces of

constraint, known as the Euler-Lagrange equations:

𝑰  𝜃 = −𝐓T 𝐌  𝐓 −𝐖𝐌𝐓  𝜃 + 𝐓T 𝐰A +𝐰D +𝐰G
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𝐈  𝜽 = −𝐓T 𝐌  𝐓 −𝐖𝐌𝐓  𝜽 + 𝐓T 𝐰A +𝐰D +𝐰G

Where I is the positive definite n x n generalized inertia

matrix of the manipulator and is defined as

𝐈 = 𝐓T𝐌𝐓

we let τ and δ denote the n-dimensional vectors of active

and dissipative generalized force.

𝛕 = 𝐓T𝐰A 𝛅 = 𝐓T𝐰𝐃 𝛄 = 𝐓T𝐰G

Moreover, we let C(θ,  𝛉)  𝛉 be the n-dimensional vector of

quadratic terms of inertia force.

𝐂 𝛉,  𝛉 = −𝐓T(𝐌𝐓 +𝐖𝐌𝐓)
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Thus, the Euler-Lagrange equations of the system 

take on the form:

𝐈 𝛉  𝛉 = 𝐂 𝛉,  𝛉  𝛉 + 𝛕 + 𝛄 + 𝛅

If, moreover, a static wrench ww acts onto the EE,

then its effect onto the above model is taken into

account by adding a term JTww

𝐈 𝛉  𝛉 = 𝐂 𝛉,  𝛉  𝛉 + 𝛕 + 𝛄 + 𝛅 + 𝐉T𝐰w
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CONSTRAINT EQUATIONS

If Ei is defined as the cross-product matrix of vector

ei, then the angular velocities of two successive links

obey a simple relation, namely.

𝐄i 𝜔𝑖 − 𝜔𝑖−1 = 0

Considering a rotational joint:

 𝐜i =  𝐜i−1 +ωi−1 × 𝛅i−1 +ωi × 𝛒𝐢
 𝐜i −  𝐜i−1 + 𝐑𝑖𝜔𝑖 + 𝐃𝑖−1𝜔𝑖−1 = 0

where Di and Ri are defined as the cross-product

matrices of vectors δi and ρi
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In particular, if the first link is inertial, the above equations

become

𝐄𝟏𝜔1 = 0 𝐜i + 𝐑1𝜔1 = 0

Expressing these equations in terms of link twists we have:

𝐊11𝐭1 = 0
𝐊i, 𝐊i−1𝐭i−1 + 𝐊ii𝐭i = 0

Where:

𝑲11 =
𝐄1 𝟎
𝐑1 𝟏

𝐊i,i−1 =
−𝐄i 𝟎
𝐃i−1 −𝟏

𝐊ii =
𝐄i 𝟎
𝐑i 𝟏
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CONSTRAINT EQUATIONS

From the foregoing equations the K matrix, appering

in Kt=0 , takes on the form:

𝐊 =

𝐊11 𝟎6 𝟎6 ⋯ 𝟎6 𝟎6
𝐊21 𝐊22 𝟎6 ⋯ 𝟎6 𝟎6
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝟎6 𝟎6 𝟎6 ⋯ 𝐊n−1,n−1 𝟎6
𝟎6 𝟎6 𝟎6 ⋯ 𝐊n,n−1 𝐊n,n

With 06 denoting the 6 x 6 zero matrix.
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CONSTRAINT EQUATIONS

Further, the link-twists are expressed as linear

combinations of the joint-rate vector  𝛉. To this end,

we define the 6 x n partial Jacobian Ji as the matrix

mapping the joint-rate vector 𝛉 into the twist ti
𝐉𝐢  𝜽 = 𝐭i

whose jth column, tij, is given, for i, j = 1, 2, . . . , n, by

𝐭ij =

𝐞j
𝐞j × 𝐫ij
𝟎
𝟎

𝑗 ≤ 𝑖
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CONSTRAINT EQUATIONS

With rij illustrated and defined as:

𝐫ij =  

𝐚j + 𝐚j+1 + 𝐚i−1 + 𝛒i j < i

𝛒i j = 1
𝟎 otherwise
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CONSTRAINT EQUATIONS

We can thus readily express the twist ti of the ith link

as a linear combination of the first i joint rates,

namely.

𝐭i =  𝜃1𝐭i1 +
  𝜃2𝐭i2 +⋯+  𝜃i𝐭ii

and hence, matrix T takes the form

𝐓 =

𝐭11 𝟎 ⋯ 𝟎
𝐭21 𝐭22 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝐭n1 𝐭n2 ⋯ 𝐭nn
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CONSTRAINT EQUATIONS
The kinematic constraint equations on the twists, for the

case in which the ith joint is prismatic, are obtained in the

same way.

𝛚𝑖 = 𝛚𝑖−1

 𝐜i =  𝐜i−1 +𝛚i−1 × 𝛅i−1 + 𝐩i + 𝑏i𝐞i +  𝑏i𝐞i
We introduce one further definition:

𝐑i
′ = 𝐃i−1

′ + 𝐑i

where Di-1 is the cross-product matrix of vector δi-1, while

Ri is the cross-product matrix of ρi+biei

Hence the above equation can be rewritten as:

 𝐜𝐢 −  𝐜i−1 + 𝐑i
′𝛚i −  𝑏i𝐞i = 0
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CONSTRAINT EQUATIONS
Multiplying both sides of the equation by Ei the term 
 𝑏𝑖 vanishes, we thus obtain:

𝐄i  𝐜i −  𝐜i−1 + 𝐑i
′𝛚i = 𝟎

The above equations can be grouped into the system

linear and homogeneous in the unknown twist.

𝐊i,i−1
′ 𝐭i−1 + 𝐊ii

′ 𝐭i = 𝟎

the associated matrices being defined below

𝐊i,i−1
′ =

−𝟏 𝟎
𝟎 −𝐄i

𝐊i,i
′ =

𝟏 𝟎
𝐄i𝐑i

′ 𝐄i
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CONSTRAINT EQUATIONS

If the first joint is prismatic, then the corresponding

constraint equation takes on the form:

𝐊11
′ 𝐭1 = 𝟎

Where: 𝐊11
′ =

𝟏 𝟎
𝟎 𝐄i

Furthermore, if the kth pair is prismatic 1 ≤ k ≤ ithen

the twist ti of the ith link changes to

𝐭i =  𝜃1𝐭i1 +⋯+  𝑏𝑘𝐭ik
′ +⋯+  𝜃i𝐭ii

Where: 𝐭ik
′ =

𝟎
𝐞k
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CONSTRAINT EQUATIONS
If the pair is a revolute joint  𝐭ij is obtained by deriving tij from 

foregoing equations:

 𝒕𝑖𝑗 =

𝛚j × 𝐞j
(𝛚j × 𝐞j) × 𝐞j × 𝐞ij

se j ≤ i

𝟎
𝟎

otherwise

Where:

 𝐫ij = 𝛚𝐣 × 𝐚j +⋯+𝛚j−1 × 𝐚j−1 +𝛚i × 𝛒i

If the pair is prismatic the time-rate of change tik’ becomes:

 𝐭ik
′ =

𝟎
𝛚k × 𝐞k
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NONINERTIAL BASE LINK
Noninertial bases occur in space applications. A

noninertial base can be readily handled with the use of

the natural orthogonal complement.

Since the base is free of attachments to an inertial

frame,we have to add its six degrees of freedom (dof)

to the n dof of the rest of the manipulator.

In particular, t, wC, wA, and wD now become 6(n + 1)-

D vectors and they take the form:

𝐭 = 𝐭0
T 𝐭1

T ⋯ 𝐭n
T T  𝛉 = 𝐭0

T  𝜃1 ⋯  𝜃𝑛

𝐓 =
𝟏 𝟎
𝟎′ 𝐓′

𝐕 = 𝐭0
T  𝜃1 ⋯  𝜃𝑛

T
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