DYNAMICS OF PARALLEL
MANIPULATOR




The 6#x67 matrices of manipulator mass M and
manipulator angular velocity W are introduced below:
M = diag (M{,M,, ... ... ,M,)

W = diag (W, W,, ... ... ,W,))

From this definitions we have:
u =Mt
[t = Mt + WMt
With the foregoing definitions, then, the kinetic energy ot
the manipulator takes on a simple form, namely,
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T=-t'Mt= -t'
2 2 H




Upon dertving from the expression of the kinetic
energy we have:
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The Euler-Lagrange equations can be written in the form:
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After the semphﬁcatlon the equation takes the form:
T =tTMTO + tTMTO

Recalling foregoing relation, we have:

0T .
— =T'Mt=T'MT®O
00

Upon substituting , we obtain:

T—a—T 0+ — oT\' 0
- \de 90




00 00 00
O_H = TTw4
o
—_— = TTWD " e — -
PY: 10+ C(O 0)0=71-5

1(0) = T"MT
Substituting these relations in the equation we have:
10 + TTMTO + TTWMT 0 = TT (w4 — wP)
10 = -TTMTO — TTWMT 0 + TT (w2 — wP)
The equation can be expressed in the form below:

16+ C(6,0)0 =7 —




INTRODUCTION

We illustrate the modeling techniques of mechanical systems
with kinematic loops via a class of systems known as parallel
manipulators. While parallel manipulators can take on a large
variety of forms, we focus here on those termed platform
manipulators, with an architecture similar to that of ftlight
simulators.

In platform manipulators we can distinguish two special links,
namely, the base B and the moving platform M. Moreover,
these two links are coupled via six legs, with each leg
constituting a six-axis kinematic chain of the serial type, as
shown in figure whereby a wrench w' | represented by a

double-headed arrow, acts on M and 1s applied at C;; the mass
center of M.
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PARALLEL MANIPULATOR

However, the modeling discussed below 1s not restricted
to this particular geometry. As a matter of fact, these axes
need not even be coplanar. On the other hand, the
architecture of the above figure is very general, for it
includes more specific types of platform manipulators,
such as flight simulators. In these, the first three revolute
axes stemming from the base platform have intersecting
axes, thereby giving rise to a spherical kinematic pair,
while the upper two axes intersect at right angles, thus
constituting a universal joint. Moreover, the intermediate
joint in flight simulators is not a revolute, but rather a
prismatic




. PARALLEL MANIPULATOR

A leg kinematically equivalent to that of ftlight
simulators can be obtained from that of the
manipulator if the intermediate revolute has an axis
perpendicular to the line connecting the centers of the
spherical and the universal joints of the corresponding
leg. In flight simulators, the pose of the moving
platform is controlled by hydraulic actuators that vary
the distance between these two centers. In the
revolute-coupled equivalent leg, the length of the
same line is controlled by the rotation of the
intermediate revolute.
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The graph of the system depicted in the above figure




'EULER’S FORMULA FOR GRAPHS

The number ¢ of independent loops of a system with
many kinematic loops is given by:

t=j—1[+1
where ; 1s the number of revolute and prismatic joints
and /1s the number of links.
Thus, if we apply Euler's formula to the system we
conclude that 1its kinematic chain contains 5
independent loops. Hence, while the chain apparently
contains 6 distinct loops, only 5 of these are
independent.




| EULER’S FORMULA FOR GRAPHS

Moreover, the degree of freedom of the manipulator
is six. Indeed, the total number of links of the
manipulator 1s /=6x5+2 = 32. Of these, one is fixed,
and hence, we have 31 moving links, each with six
degrees of freedom prior to coupling. Thus, we have a
total of 31x6 = 186 degrees of freedom at our
disposal.

Upon coupling, each revolute removes 5 degrees of
freedom, and hence, the 36 kinematic pairs remove
180 degrees of freedom, the manipulator thus being
left with 6 degrees of freedom. the legs.




We assume that each leg 1s a six-axis open kinematic
chain with either revolute or prismatic pairs, only one
of which 1s actuated, and we thus have as many
actuated  joints as  degrees of  freedom.
We label the legs with Roman numerals I, II, ..., 171
and denote the mass center of the mobile platform M
by C,, with the twist of M denoted by t,, and
defined at the mass center. That is, if c,, denotes the
position vector of C,,in an inertial frame and Cjits
velocity, while w ,-1s the angular velocity of M, then:

W r
tar = [c]'v[




. DYNAMICS OF PARATLLEL
MANTPULATORS .

Next, the Newton-Euler equations of .
are dertved from the free-body diagram . TnS2t
this figure, the legs have been replaced by

the constraint wrenches {w;,“};"" acting at
point C 5.

The governing equation takes the form: (*)
VI
M]V[t]\/[ — —W]V[M]V[t]\/[ + WW + z W]C

=1
with w%” denoting the external wrench

acting on M.
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Let us denote by ¢, the variable of the actuated joint
of the Jth leg, all variables of the six actuated joints
being grouped in the 6-dimensional array q, 1.e.,

q= [©1 91 - aqvi]t
We derive a relation between the twist t,, and the
active joint rates, q; for [ =L II, .., I1”.
To this end, we resort to the next figure, depicting the
Jth leg as a serial-type, six-axis manipulator, whose
twist-shape relations are readily expressed as:

J,0, =ty for =111, ,., 11
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DYNAMICS OF PARALLEL

MANIPULATORS
The moving platform M has been replaced by the

constraint wrench transmitted by the moving platform
onto the end link of the Jth leg, —W]C, whose sign is the
opposite of that transmitted by this leg onto M by

virtue of Newton's third law. The dynamics model of
the manipulator then takes the form:

. Nt _
1,6, +C;(6,,6,)6, = 7, —Jjw;
Where where I, is the O6x6 1inertia matrix of the

manipulator, while C;1s the matrix coetficient of the
inertia terms that are quadratic in the joint rates.




DYNAMICS OF PARALLEL
MANIPULATORS

Morteover, O] and 7 denote the 6-dimensional vectors of
joint variables and joint torques, namel
) J ques, y,

0, - 0 :
0

0, = {2 T = | T
H .
U6 0.

with subscript J£& denoting in turn the only actuated joint
of the Jth leg, namely, the Ath joint of the leg. If we now

introduce e.,. defined as a unit vector all of whose entries

R
are zero except for the Ath entry, which 1s unity, then we

can write : T = fi€e
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If the actuated joint is prismatic, as is the case in flight
simulators, then jj is a torce; it this joint is a revolute, then
Jj1s a torque.

Now, since the dimension of q coincides with the degree
of freedom of the manipulator, it i1s possible to find,
within the framework of the natural orthogonal
complement, a 0x6 matrix L] mapping the vector of
actuated joint rates ( into the vector of Jth-leg joint-rates,
namely,

6, =Lq J=LIL ..., VT
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Moreover, if the manipulator 1s not at a singular

configuration, then we can solve for W]C:

wi =57 (t; — 1,6, - C;6))
in which the superscript -T stands for the transpose of

the inverse.

Further, we substitute W]Cin the governing equation

thereby obtaining the Newton-Euler equations of the
moving platform free of constraint wrenches.
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Additionally, the equations (¥) thus resulting now contain
inertia terms and joint torques pertaining to the Jth leg,
namely,

Vi
Moty = =Wy Myt + W + Z J7T(r; - 1,0, — C,;6))
J=1
Still  within the framework of the natural orthogonal
complement, we set up the relation between the twist t,; and the
vector of actuated joint rates q as:
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Upon differentiation with respect to time, yields

tyy = T4+ Tq
In the next step, we substitute t,its time-derivative into the
equation (**)we obtain:

My (Td + Ta) + WaeMy Ta + ) 177 (46 - ¢,6) =w + > T

J=1 J=I
Further, we recall relation @ ;=L;q  which upon
differentiation with respect to time, ylelds

0] = L]q + L]q
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These relations are substituted in the equation(**%)
thereby obtaining the model sought in terms only of

actuated joint wvariables. After simplification, this

model takes the form
VI

M, T q+ M, Tq + Wy M, Tq + Z ] T(,L;4 + L,L;q — C; L;q)

J=1
VI

= WW + 2 ]_T T]
=1




. DYNAMICS OF PARATLLEL
MANTPULATORS

Our final step in this formulation consists in deriving a
reduced 6x6 model in terms only of actuated joint
variables. Prior to this step, we note that:

Upon substitution of the above relation into the equation

(****) and multiplication of both sides of equation by T?
from the left, we obtain the desired model in the form:

VI
M@ +N@Da= "+ ) LT,
J=1
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With the 6x6 matrices M(q), N(q, q),and vector
T defined as:

VI
M(q) = T"M,, T + z LiL,L,

J=1
VI

™ = TTwW -
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Alternatively, the foregoing variables can be expressed
in a more compact form that will shed more light on
the above model. To do this, we define the 36x36
matrices I and C as well as the 6x36 matrix L, the 6x6
matrix A, and the 6-dimensional vector @ as:

[ = diag (I;,1;, ..., 1y;)

C = diag (C;,Cyy, ..., Cyyp)

L=[L; Ly - Ly

A=[Ley Lyey, - Lyeypyl]

¢=[f1 fuu - fVI]T
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MANIPUILATORS
M(q)4 + N(q, @q=1" + A¢

Thus, for inverse dynamics, we want to determine @ for a
motion given by q and (, which can be done from the

and hence:

above equation, namely,
¢ = A7 [M(@)d +N(q,9)q — 7]

Notice, however, that the foregoing solution is not recursive,
and since it requires linear-equation solving, it is of order 7,
which thus yields a rather high numerical complexity. It should
be possible to produce a recursive algorithm for the
computation of ¢@.
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MANIPULATORS
M(q)d + N(q, 9)q = ¥ + A¢

For purposes of direct dynamics, on the other hand,
we want to solve for . This can be readily done if we
define the state-variable model thus taking on the

form: q=r

r=M1[-N(q,r)r+ " + A¢]




EXAMPLE

Derive matrix L;of equation for a manipulator having
six 1dentical legs and the actuators being placed at the
fourth joint.

SOLUTION:We attach coordinate frames to the links
of the serial chain of the Jth leg following the DH
notation, while noting that the first three joints intersect
at a common point, and hence, r; = r, = r;. According
to this notation, we recall, vector t, 1s directed from the
origin O of the zh frame to the operation point of the
manipulator, which in this case, 1s C .




EXAMPLE

The Jacobian matrix of the Jth leg then takes the form
[ el eZ 63 e4_ 65 e6 ]

)y = e, XI; €, XTIy €e3XI €,XI, € XTI €gXIg

The subscript J of the array in the right-hand side
reminding us that the vectors inside it pertain to the Jth
leg. Thus, matrix J; maps the joint-rate vector of the Jth

leg @,into the twist t 5, of the platform, i.e.
J,0; =ty
Clearly, the joint-rate vector of the Jth leg is defined as:

0,=10;1 6 0535 04 05 6




EXAMPLE

Now. note that except for 8;,. all joint-rates of this leo are
b p ]43 ] g
passive and thus need not appear in the mathematical

model of the whole manipulator. Hence, we should aim at
climinating all joint-rates from the above twist-rate
relation, except for the one associated with the active
joint. We can achieve this if we realize that:
l‘]1 X e]i + eji X 1‘11 =0 i:1,2,3
Further, we define a 3x6 matrix AJ as:
A] — [Rll 1]
with R, defined, in turn, as the cross-product mattix of

r]7.




EXAMPLE

Now, upon multiplication of J, by A, from the left, we obtain a
3 x 6 matrix whose first three columns vanish, namely,
AjJ;=10 0 0 e,x(ry,—r)0, esx(rs—r)0s esX (rs—r)0;]
If we multiply both sides of the above twist-shape equation by
A, from the left, we will obtain a new twist-shape equation that
is free of the first three joint rates. Moreover, this equation is
3-dimensional, 1.e.,

[94 X (ry —11)0, +e5 X (s — ;)05 + e5 x (15 — r1)9.5]

= wyr XIj; + Cyp
Where the subscript | attached to the brackets enclosing the
whole left-hand side again reminds us that all quantities
therein are to be understood as pertaining to the Jth leg.




EXAMPLE

Furthermore, only 64 is associated with an active
joint and denoted, henceforth, by gy, 1.e.,

q; = 04
We have now to eliminate both 9}5 and 9}6from the

foregoing equation. This can be readily accomplished
it we dot-multiply both sides of the same equation by
vector u; defined as the cross product of the vector
coetficients of the two passive joint rates, i.e.,

u, = [es X (15 —1r1)]; X [eg X (5 — 1) ]




EXAMPLE

We thus obtain a third twist-shape relation that 1s
scalar and free of passive joint rates, namely

u; - [e4 X (ry — r1)94]] =w;(—wy X1, +Cy
The above equation is clearly of the form
Ciq; = Y]TtM q; = (94)] J=L1,..., V1
With ¢, and y; defined, in turn, as:

=y epy X (17, — 1)
—I‘l X ll]
i = [ u; ]




EXAMPLE

Upon assembling the foregoing six scalar twist-shape
relations, we obtain a O6-dimensional twist-shape
relation between the active joint rates of the
manipulator and the twist of the moving platform,

namely, 2q =Yty
with the obvious definitions for the two 6 x 6 matrices
Y and Z given below:
o
yi
Vir -
Y = :” Z = diag ({;, Cppy s Cyp)
-YI;I-




EXAMPLE

We now can determine matrix T of the procedure
described above, as long as Y is invertible, in the
form:

T=Y"'Z
whence the leg-matrix L, of the same procedute is
readily determined, namely.

— 71
L, =J;IT




