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The 6nx6n matrices of manipulator mass M and

manipulator angular velocity W are introduced below:

𝐌 = diag 𝐌1, 𝐌2, …… ,𝐌𝑛

𝐖 = diag (𝐖1,𝐖2, …… ,𝐖𝑛)

From this definitions we have:

𝝁 = 𝐌𝐭
 𝝁 = 𝐌  𝐭 +𝐖𝐌𝐭

With the foregoing definitions, then, the kinetic energy of

the manipulator takes on a simple form, namely,
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Upon deriving from the expression of the kinetic

energy we have:
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The Euler-Lagrange equations can be written in the form:
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After the semplification, the equation takes the form:
 𝐓 = 𝐭𝐓𝐌𝐓  𝜽 + 𝐭𝐓𝐌  𝐓  𝜽

Recalling foregoing relation, we have:
𝜕𝐓

𝜕𝜽
= 𝐓𝑇𝐌𝐭 = 𝐓𝑇𝐌𝐓  𝜽

Upon substituting , we obtain:
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𝐈 𝜽 = 𝐓𝑇𝐌𝐓
Substituting these relations in the equation we have:

𝐈  𝜽 + 𝐓𝑇𝐌  𝐓  𝜽 + 𝐓𝑇𝐖𝐌𝐓  𝜽 = 𝐓𝑻(𝐰𝐴 −𝐰𝐷)

𝐈  𝜽 = −𝐓𝑇𝐌  𝐓  𝜽 − 𝐓𝑇𝐖𝐌𝐓  𝜽 + 𝐓𝑻(𝐰𝐴 −𝐰𝐷)
The equation can be expressed in the form below:

𝐈  𝜽 + 𝑪 𝜽,  𝜽  𝜽 = 𝝉 − 𝜹

δτθCθI 
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INTRODUCTION
We illustrate the modeling techniques of mechanical systems

with kinematic loops via a class of systems known as parallel

manipulators. While parallel manipulators can take on a large

variety of forms, we focus here on those termed platform

manipulators, with an architecture similar to that of flight

simulators.

In platform manipulators we can distinguish two special links,

namely, the base ℬ and the moving platform ℳ. Moreover,

these two links are coupled via six legs, with each leg

constituting a six-axis kinematic chain of the serial type, as

shown in figure whereby a wrench wW , represented by a

double-headed arrow, acts on ℳ and is applied at CM the mass

center of ℳ.
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PARALLEL MANIPULATOR
However, the modeling discussed below is not restricted

to this particular geometry. As a matter of fact, these axes

need not even be coplanar. On the other hand, the

architecture of the above figure is very general, for it

includes more specific types of platform manipulators,

such as flight simulators. In these, the first three revolute

axes stemming from the base platform have intersecting

axes, thereby giving rise to a spherical kinematic pair,

while the upper two axes intersect at right angles, thus

constituting a universal joint. Moreover, the intermediate

joint in flight simulators is not a revolute, but rather a

prismatic



PARALLEL MANIPULATOR
A leg kinematically equivalent to that of flight

simulators can be obtained from that of the

manipulator if the intermediate revolute has an axis

perpendicular to the line connecting the centers of the

spherical and the universal joints of the corresponding

leg. In flight simulators, the pose of the moving

platform is controlled by hydraulic actuators that vary

the distance between these two centers. In the

revolute-coupled equivalent leg, the length of the

same line is controlled by the rotation of the

intermediate revolute.



PARALLEL MANIPULATOR

The graph of the system depicted in the above figure



EULER’S FORMULA FOR GRAPHS

The number ι of independent loops of a system with 

many kinematic loops is given by:

𝜄 = 𝑗 − 𝑙 + 1
where j is the number of revolute and prismatic joints

and l is the number of links.

Thus, if we apply Euler's formula to the system we

conclude that its kinematic chain contains 5

independent loops. Hence, while the chain apparently

contains 6 distinct loops, only 5 of these are

independent.



EULER’S FORMULA FOR GRAPHS
Moreover, the degree of freedom of the manipulator

is six. Indeed, the total number of links of the

manipulator is l=6x5+2 = 32. Of these, one is fixed,

and hence, we have 31 moving links, each with six

degrees of freedom prior to coupling. Thus, we have a

total of 31x6 = 186 degrees of freedom at our

disposal.

Upon coupling, each revolute removes 5 degrees of 

freedom, and hence, the 36 kinematic pairs remove 

180 degrees of freedom, the manipulator thus being 

left with 6 degrees of freedom. the legs.



We assume that each leg is a six-axis open kinematic

chain with either revolute or prismatic pairs, only one

of which is actuated, and we thus have as many

actuated joints as degrees of freedom.

We label the legs with Roman numerals I, II, ….,VI

and denote the mass center of the mobile platform ℳ
by Cℳ with the twist of ℳ denoted by tℳ and

defined at the mass center. That is, if cℳ denotes the

position vector of Cℳ in an inertial frame and  𝐜ℳits

velocity, while ωℳ is the angular velocity of ℳ, then:

𝐭ℳ =
𝝎ℳ

 𝐜ℳ
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MANIPULATORS
Next, the Newton-Euler equations of ℳ
are derived from the free-body diagram . In

this figure, the legs have been replaced by

the constraint wrenches {wJ
C}I

VI acting at

point Cℳ .

The governing equation takes the form: (*)

𝐌ℳ  𝐭ℳ = −𝐖ℳ𝐌ℳ𝐭ℳ +𝐰𝑊 +  

𝑗=𝐼

𝑉𝐼

𝐰𝐽
𝐶

with 𝐰𝑊 denoting the external wrench

acting on ℳ.
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MANIPULATORS
Let us denote by qJ the variable of the actuated joint

of the Jth leg, all variables of the six actuated joints

being grouped in the 6-dimensional array q, i.e.,

𝐪 ≡ 𝑞𝐼 𝑞𝐼𝐼 ⋯ 𝑞𝑉𝐼 𝑇

We derive a relation between the twist tℳ and the

active joint rates,  𝑞𝐽 for J = I, II, ,.., IV.

To this end, we resort to the next figure, depicting the

Jth leg as a serial-type, six-axis manipulator, whose

twist-shape relations are readily expressed as:

𝐉𝐽  𝜽𝐽 = 𝐭ℳ for J = I, II, ,.., VI



THE SERIAL MANIPULATOR OF 

THE JTH LEG
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The moving platform ℳ has been replaced by the

constraint wrench transmitted by the moving platform

onto the end link of the Jth leg, −𝐰𝐽
𝐶 , whose sign is the

opposite of that transmitted by this leg onto ℳ by

virtue of Newton's third law. The dynamics model of

the manipulator then takes the form:

𝐈𝐽  𝜽𝐽 + 𝐂𝐽 𝜽𝐽,  𝜽𝐽  𝜽𝐽 = 𝝉𝐽 − 𝐉𝐽
𝑇𝐰𝐽

𝐶

Where where IJ is the 6x6 inertia matrix of the

manipulator, while CJ is the matrix coefficient of the

inertia terms that are quadratic in the joint rates.
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Moreover, θJ and τJ denote the 6-dimensional vectors of

joint variables and joint torques, namely,

𝜽𝐽 ≡

𝜃𝐽1
𝜃𝐽2
⋮
𝜃𝐽6

𝝉𝐽 ≡

0
⋮
𝜏𝐽𝑘
⋮
0

with subscript Jk denoting in turn the only actuated joint

of the Jth leg, namely, the kth joint of the leg. If we now

introduce ejk, defined as a unit vector all of whose entries

are zero except for the kth entry, which is unity, then we

can write : 𝝉𝐽 = 𝑓𝐽𝐞𝐽𝑘
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MANIPULATORS
If the actuated joint is prismatic, as is the case in flight

simulators, then fJ is a force; if this joint is a revolute, then

fJ is a torque.

Now, since the dimension of q coincides with the degree

of freedom of the manipulator, it is possible to find,

within the framework of the natural orthogonal

complement, a 6x6 matrix LJ mapping the vector of

actuated joint rates  𝐪 into the vector of Jth-leg joint-rates,

namely,

 𝜽𝐽 = 𝐋𝐽  𝐪 J=I,II, …., VI
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Moreover, if the manipulator is not at a singular

configuration, then we can solve for 𝐰𝐽
𝐶 :

𝐰𝐽
𝐶 = 𝐉𝐽

−𝑇(𝝉𝐽 − 𝐈𝐽  𝜽𝐽 − 𝐂𝐽  𝜽𝐽)

in which the superscript -T stands for the transpose of

the inverse.

Further, we substitute 𝐰𝐽
𝐶 in the governing equation

thereby obtaining the Newton-Euler equations of the

moving platform free of constraint wrenches.
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Additionally, the equations (*) thus resulting now contain

inertia terms and joint torques pertaining to the Jth leg,

namely,

𝐌ℳ  𝐭ℳ = −𝐖ℳ𝐌ℳ𝐭ℳ +𝐰𝑊 + 

𝐽=𝐼

𝑉𝐼

𝐉−𝑇(𝝉𝐽 − 𝐈𝐽  𝜽𝐽 − 𝐂𝐽  𝜽𝐽)

Still within the framework of the natural orthogonal

complement, we set up the relation between the twist tM and the

vector of actuated joint rates  𝐪 as:

𝐭ℳ = 𝐓  𝐪
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Upon differentiation with respect to time, yields

 𝐭ℳ = 𝐓  𝐪 +  𝐓  𝐪

In the next step, we substitute tℳ its time-derivative into the

equation (**)we obtain:

𝐌ℳ 𝐓  𝐪 +  𝐓  𝐪 +𝐖ℳ𝐌ℳ𝐓  𝐪 + 

𝐽=𝐼

𝑉𝐼

𝐉−𝑇(𝐈𝐽  𝜽𝐽 − 𝐂𝐽  𝜽𝐽) = 𝐰𝑊 + 

𝐽=𝐼

𝑉𝐼

𝐉−𝑇 𝝉𝐽

Further, we recall relation  𝜽𝐽 = 𝐋𝐽  𝐪 which upon

differentiation with respect to time, yields:
 𝜽𝐽 = 𝐋𝐽  𝐪 +  𝐋𝐽  𝐪
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These relations are substituted in the equation(***)

thereby obtaining the model sought in terms only of

actuated joint variables. After simplification, this

model takes the form

𝐌ℳ𝐓  𝐪 +𝐌ℳ
 𝐓𝐪 +𝐖ℳ𝐌ℳ𝐓  𝐪 + 

𝐽=𝐼

𝑉𝐼

𝐉−𝑇(𝐈𝐽𝐋𝐽  𝐪 + 𝐈𝐽  𝐋𝐽  𝐪 − 𝐂𝐽 𝐋𝐽  𝐪)

= 𝐰𝑊 + 

𝐽=𝐼

𝑉𝐼

𝐉−𝑇 𝝉𝐽
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Our final step in this formulation consists in deriving a

reduced 6x6 model in terms only of actuated joint

variables. Prior to this step, we note that:

𝐉𝐽  𝜽𝐽 = 𝐭ℳ ;  𝜽𝐽 = 𝐋𝐽  𝐪; 𝐭ℳ = 𝐓  𝐪 𝐋𝐽 = 𝐉𝐽
−1𝐓

Upon substitution of the above relation into the equation 

(****) and multiplication of both sides of equation by TT

from the left, we obtain the desired model in the form:

𝐌 𝐪  𝐪 + 𝐍 𝐪,  𝐪  𝐪 = 𝝉𝑊 +  

𝐽=𝐼

𝑉𝐼

𝐋𝐽𝝉𝐽
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With the 6x6 matrices 𝐌 𝐪 ,𝐍 𝐪,  𝐪 ,and vector 

𝝉𝑊defined as:

𝐌 𝐪 ≡ 𝐓𝑇𝐌ℳ𝐓 +  

𝐽=𝐼

𝑉𝐼

𝐋𝐽
𝑇𝐈𝐽𝐋𝐽

𝐍 𝐪,  𝐪 = 𝐓𝑇 𝐌ℳ
 𝐓 +𝐖ℳ𝐌ℳ𝐓ℳ + 

𝐽=𝐼

𝑉𝐼

𝐋𝐽(𝐈𝐽  𝐋𝐽 + 𝐂𝐽𝐋𝐽)

𝝉𝑊 ≡ 𝐓𝑇𝐖𝑊
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Alternatively, the foregoing variables can be expressed

in a more compact form that will shed more light on

the above model. To do this, we define the 36x36

matrices I and C as well as the 6x36 matrix L, the 6x6

matrix Λ, and the 6-dimensional vector  as:

𝐈 = diag 𝐈𝐼, 𝐈𝐼𝐼 , … , 𝐈𝑉𝐼
𝐂 = diag 𝐂𝐼 , 𝐂𝐼𝐼 , … , 𝐂𝑉𝐼
𝐋 = 𝐋𝐼 𝐋𝐼𝐼 ⋯ 𝐋𝑉𝐼
𝜦 = 𝐋𝐼𝐞𝐼𝑘 𝐋𝐼𝐼𝐞𝐼𝐼𝑘 ⋯ 𝐋𝑉𝐼𝐞𝑉𝐼𝑘
𝝓 = 𝑓𝐼 𝑓𝐼𝐼 ⋯ 𝑓𝑉𝐼

𝑇
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MANIPULATORSand hence:

𝐌 𝐪  𝐪 + 𝐍 𝐪,  𝐪  𝐪 = 𝝉𝑊 + 𝜦𝝓

Thus, for inverse dynamics, we want to determine  for a

motion given by q and  𝐪, which can be done from the

above equation, namely,

𝝓 = 𝜦−1[𝐌 𝐪  𝐪 + 𝐍 𝐪,  𝐪  𝐪 − 𝝉𝑊]

Notice, however, that the foregoing solution is not recursive,

and since it requires linear-equation solving, it is of order n3,

which thus yields a rather high numerical complexity. It should

be possible to produce a recursive algorithm for the

computation of .
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𝐌 𝐪  𝐪 + 𝐍 𝐪,  𝐪  𝐪 = 𝝉𝑊 + 𝜦𝝓

For purposes of direct dynamics, on the other hand, 

we want to solve for  𝐪. This can be readily done if we 

define the state-variable model thus taking on the 

form:  𝐪 = 𝐫

 𝐫 = 𝐌−1[−𝐍 𝐪, 𝐫 𝐫 + 𝝉𝑊 + 𝜦𝝓]



EXAMPLE 

Derive matrix LJ of equation for a manipulator having

six identical legs and the actuators being placed at the

fourth joint.

SOLUTION:We attach coordinate frames to the links

of the serial chain of the Jth leg following the DH

notation, while noting that the first three joints intersect

at a common point, and hence, r1 = r2 = r3. According

to this notation, we recall, vector ri is directed from the

origin Oi of the iih frame to the operation point of the

manipulator, which in this case, is Cℳ .



EXAMPLE

The Jacobian matrix of the Jth leg then takes the form

𝐉𝐽 =
𝐞1 𝐞2 𝐞3 𝐞4 𝐞5 𝐞6

𝐞1 × 𝐫1 𝐞2 × 𝐫1 𝐞3 × 𝐫1 𝐞4 × 𝐫4 𝐞5 × 𝐫5 𝐞6 × 𝐫6

The subscript J of the array in the right-hand side

reminding us that the vectors inside it pertain to the Jth

leg. Thus, matrix JJ maps the joint-rate vector of the Jth

leg  𝜽𝐽into the twist tℳ of the platform, i.e.

𝐉𝐽  𝜽𝐽 = 𝐭ℳ

Clearly, the joint-rate vector of the Jth leg is defined as:

 𝜽𝐽 ≡  𝜃𝐽1  𝜃𝐽2  𝜃𝐽3  𝜃𝐽4  𝜃𝐽5  𝜃𝐽6
𝑇



EXAMPLE
Now, note that except for  𝜃𝐽4, all joint-rates of this leg are

passive and thus need not appear in the mathematical

model of the whole manipulator. Hence, we should aim at

eliminating all joint-rates from the above twist-rate

relation, except for the one associated with the active

joint. We can achieve this if we realize that:

𝐫𝐽1 × 𝐞𝐽𝑖 + 𝐞𝑗𝑖 × 𝐫𝐽1 = 𝟎 i=1,2,3

Further, we define a 3x6 matrix AJ as:

𝐀𝑱 = 𝐑𝑱𝟏 𝟏

with RJ1 defined, in turn, as the cross-product matrix of

rJ1.



EXAMPLE

Now, upon multiplication of JJ by AJ from the left, we obtain a

3 x 6 matrix whose first three columns vanish, namely,
𝐀𝐽𝐉𝐽 = 0 0 0 𝐞4 × 𝐫4 − 𝐫1  𝜽4 𝐞5 × 𝐫5 − 𝐫1  𝜽5 𝐞5 × 𝐫5 − 𝐫1  𝜽5

If we multiply both sides of the above twist-shape equation by

AJ from the left, we will obtain a new twist-shape equation that

is free of the first three joint rates. Moreover, this equation is

3-dimensional, i.e.,

𝐞4 × 𝐫4 − 𝐫1  𝜽4 + 𝐞5 × 𝐫5 − 𝐫1  𝜽5 + 𝐞5 × 𝐫5 − 𝐫1  𝜽5
= 𝝎ℳ × 𝐫𝐽1 +  𝐜ℳ

Where the subscript J attached to the brackets enclosing the

whole left-hand side again reminds us that all quantities

therein are to be understood as pertaining to the Jth leg.



EXAMPLE

Furthermore, only  𝜃𝐽4 is associated with an active

joint and denoted, henceforth, by  𝑞𝐽, i.e.,

𝑞𝐽 = 𝜃𝐽4

We have now to eliminate both  𝜃𝐽5 and  𝜃𝐽6from the

foregoing equation. This can be readily accomplished

if we dot-multiply both sides of the same equation by

vector uJ defined as the cross product of the vector

coefficients of the two passive joint rates, i.e.,

𝐮𝐽 ≡ 𝐞5 × 𝐫5 − 𝐫1 𝐽 × 𝐞6 × 𝐫5 − 𝐫1 𝐽



EXAMPLE
We thus obtain a third twist-shape relation that is

scalar and free of passive joint rates, namely

𝐮𝑗 ∙ 𝐞4 × 𝐫4 − 𝐫1  𝜃4 𝐽
= 𝐮𝐽(−𝝎𝑀 × 𝐫𝐽1 +  𝐜𝑀

The above equation is clearly of the form

𝜁𝑗  𝑞𝐽 = 𝐲𝐽
𝑇𝐭ℳ  𝑞𝐽 =  𝜃4 𝐽

J=I,II,…,VI

With J and yJ defined, in turn, as:

𝜁𝐽 = 𝐮J ∙ 𝐞𝐽4 × 𝐫𝐽4 − 𝐫𝐽1

𝐲𝐽 =
−𝐫1 × 𝐮𝐽

𝐮𝐽



EXAMPLE
Upon assembling the foregoing six scalar twist-shape

relations, we obtain a 6-dimensional twist-shape

relation between the active joint rates of the

manipulator and the twist of the moving platform,

namely, 𝐙  𝐪 = 𝐘𝐭ℳ
with the obvious definitions for the two 6 x 6 matrices 

Y and Z given below:

𝐘 =

𝐲𝐼
𝑇

𝐲𝐼𝐼
𝑇

⋮
𝐲𝑉𝐼
𝑇

𝐙 = diag (𝜁𝐼 , 𝜁𝐼𝐼 , … , 𝜁𝑉𝐼)



EXAMPLE

We now can determine matrix T of the procedure

described above, as long as Y is invertible, in the

form:

𝐓 = 𝐘−1𝐙

whence the leg-matrix LJ of the same procedure is

readily determined, namely.

𝐋𝐽 = 𝐉𝐽
−1𝐓


