GEOMETRY OF DECOUPLED SERIAL ROBOTS

DEFINITIONS

- Kinematic Chain:is a set of rigid bodies(links)coupled by kinematic pairs(joints)
- Kinematic Pair: is the coupling of two rigid bodies so as to constrain their relative motion. They can be produce in 2 diffenrent types:
\square Rotating Pair \boldsymbol{R} (revolute)
\square Sliding Pair P (prismatic)

THE DENAVIT-HARTENBERG NOTATION

THE DENAVIT-HARTENBERG NOTATION'S RULES

1. Z_{i} is the axis of the $i^{\text {th }}$ pair.
2. X_{i} is defined as the common perpendicular to Z_{i-1} and Z_{i}, directed from the former to the latter.
3. The distance between Z_{i} and Z_{i+1} is defined as \underline{a}_{i}
4. The Z_{i}-coordinate of the intersection O_{i}^{\prime} of Z_{i} with X_{i+1} is denoted by \underline{b}_{i}.
5. The angle between Z_{i} and Z_{i+1} is defined as $\underline{\alpha}_{i}$ and is measured about the positive direction of X_{i+1}.
6. The angle between X_{i} and X_{i+1} is defined as $\underline{\theta}_{i}$ and is measured about the positive direction of Z_{i}.

THE DH NOTATION

The relative position and orientation between links is fully specified by the:

- Rotation Matrix: taking the X_{i}, Y_{i}, Z_{i} axes into a configuration in which they are parallel pair wise to the $X_{i+j}, Y_{i+1}, Z_{i+1}$
- Position vector of the origin of the latter in the former.

Let: $\lambda_{i}=\cos \alpha_{i}, \mu_{i}=\sin \alpha_{i}$

$$
\left[\mathbf{C}_{i}\right]_{i} \equiv\left[\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\boldsymbol{\Lambda}_{i}\right]_{i} \equiv\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \lambda_{i} & -\mu_{i} \\
0 & \mu_{i} & \lambda_{i}
\end{array}\right]
$$

Geometry of Decoupled Serial Robots

THE DH NOTATION

One more factoring of matrix Qi, which finds applications in manipulator kinematics, is given below:

$$
\mathbf{Q}_{i}=\mathbf{Z}_{i} \mathbf{X}_{i}
$$

\mathbf{X}_{i} and \mathbf{Z}_{i} defined as two pure reflections, the former about the $Y_{i} Z_{i}$ plane, the latter about the $X_{i} Y_{i}$ plane

$$
\left[\mathbf{X}_{i}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\lambda_{i} & \mu_{i} \\
0 & \mu_{i} & \lambda_{i}
\end{array}\right] ; \quad\left[\mathbf{Z}_{i}\right]=\left[\begin{array}{ccc}
\cos \theta_{i} & \sin \theta_{i} & 0 \\
\sin \theta_{i} & -\cos \theta_{i} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

\mathbf{X}_{i} and \mathbf{Z}_{i} are symmetric and self-inverse

In order to derive an expression for the position vector \mathbf{a}_{i} connecting the origin O_{i} of \mathcal{F}_{i} with $\mathcal{F}_{i+1}, O_{i+1}$ reference is made to Figure showing the relative positions of the different origins and axes involved.
From this figure: $\mathbf{a}_{\boldsymbol{i}} \equiv \overrightarrow{O_{i} O_{i+1}}=\overrightarrow{{O_{i} O_{i \prime}}^{\alpha_{i}}}+\overrightarrow{O_{i \prime} O_{i+1}}$

Where:

$$
\left[\overrightarrow{O_{i} O_{i \prime}}\right]_{i}=\left[\begin{array}{c}
0 \\
0 \\
b_{i}
\end{array}\right] \quad\left[\overrightarrow{O_{i \prime} O_{i+1}}\right]_{i+1}=\left[\begin{array}{c}
a_{i} \\
0 \\
0
\end{array}\right]
$$

The two foregoing vectors should be expressed in the same coordinate frame.

$$
\left[\overrightarrow{O_{i \prime} O_{i+1}}\right]_{i}=\left[\mathbf{Q}_{i}\right]_{i} \times\left[\overrightarrow{O_{i \prime} O_{i+1}}\right]_{i+1}=\left[\begin{array}{c}
a_{i} \cos \theta_{i} \\
a_{i} \sin \theta_{i} \\
0
\end{array}\right]
$$

Hence:

$$
\left[\mathbf{a}_{i}\right]_{i}=\left[\begin{array}{c}
a_{i} \cos \theta_{i} \\
a_{i} \sin \theta_{i} \\
b_{i}
\end{array}\right]=\mathbf{Q}_{i} \mathbf{b}_{i} \quad ;\left[\mathbf{b}_{i}\right]=\left[\begin{array}{c}
a_{i} \\
b_{i} \mu_{i} \\
b_{i} \lambda_{i}
\end{array}\right]
$$

THE KINEMATICS OF SIXREVOLUTE MANIPULATORS

The kinematics of serial manipulators is about studying the:

- Geometry: finding relations between joint variables and Cartesian variables.
- Relation between joint rates and the twist of the EE.
- the relations between joint accelerations with the timerate of change of the twist of the EE also pertain to robot kinematics.

THE KINEMATICS OF SIXREVOLUTE MANIPULATORS

We distinguish two problems:

- Direct Displacement Problem (DDP) where the six joint variables of a given six-axis manipulator are assumed to be known and the problem consisting in finding the pose of the EE.
- Inverse Displacement Problem(IDP) where, on the contrary, the pose of the EE is given, while the six joint variables that produce this pose are to be found.

SERIAL SIX-AXIS MANIPULATOR

Geometry of Decoupled Serial Robots

SERIAL SIX-AXIS MANIPULATOR

The relative position and orientation of $\mathcal{F}_{\mathrm{i}+1}$ with respect to \mathcal{F}_{i} is given by matrix $\mathbf{Q} i$ and vector \mathbf{a}_{i}, respectively, which are displayed below for quick reference

$$
\left[\mathbf{Q}_{i}\right]=\left[\begin{array}{ccc}
\cos \theta_{i} & -\lambda_{i} \sin \theta_{i} & \mu_{i} \sin \theta_{i} \\
\sin \theta_{i} & \lambda_{i} \cos \theta_{i} & -\mu_{i} \cos \theta_{i} \\
0 & \mu_{i} & \lambda_{i}
\end{array}\right] ;\left[\mathbf{a}_{i}\right]=\left[\begin{array}{c}
a_{i} \cos \theta_{i} \\
a_{i} \sin \theta_{i} \\
b_{i}
\end{array}\right]
$$

\mathbf{Q}_{i} denotes the matrix rotating \mathcal{F}_{i} into an orientation coincident with that of $\mathcal{F}_{\mathrm{i}+1}$.
\mathbf{a}_{i} denotes the vector joining the origin of F_{i} with that of F_{i+1}, directed from the former to the latter.

SERIAL SIX-AXIS MANIPULATOR

The orientation \mathbf{Q} of the EE is obtained as a result of the six individual rotations $\left\{\mathbf{Q}_{i}\right\}_{6}{ }^{1}$ about each revolute axis through an angle θ_{i}, in a sequential order, from 1 to 6 . $\left[\mathbf{Q}_{6}\right]_{1}\left[\mathbf{Q}_{5}\right]_{1}\left[\mathbf{Q}_{4}\right]_{1}\left[\mathbf{Q}_{3}\right]_{1}\left[\mathbf{Q}_{2}\right]_{1}\left[\mathbf{Q}_{1}\right]_{1}=[\mathbf{Q}]_{1}$ $\left[\mathbf{a}_{1}\right]_{1}+\left[\mathbf{a}_{2}\right]_{1}+\left[\mathbf{a}_{3}\right]_{1}+\left[\mathbf{a}_{4}\right]_{1}+\left[\mathbf{a}_{5}\right]_{1}+\left[\mathbf{a}_{6}\right]_{1}=[\mathbf{p}]_{1}$ Both expressed in \mathcal{F}_{1}.
It is hence convenient to represent the foregoing relations in each individual frame, we obtain:

$$
\mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{Q}_{3} \mathrm{Q}_{4} \mathrm{Q}_{5} \mathrm{Q}_{6}=\mathrm{Q}
$$

SERIAL SIX-AXIS MANIPULATOR

 Foregoing equations can be cast in a more compact form if homogeneous transformations are now introduced.Thus, if we let $\mathbf{T}_{i}=\left\{\mathbf{T}_{i}\right\}_{i}$ be the 4×4 matrix transforming $\mathcal{F}_{\mathrm{i}+1}$ coordinates into \mathcal{F}_{i}-coordinates, the foregoing equations can be written in 4×4 matrix form, namely,

$$
\mathbf{T}_{1} \mathbf{T}_{2} \mathbf{T}_{3} \mathbf{T}_{4} \mathbf{T}_{5} \mathbf{T}_{6}=\mathbf{T}
$$

with \mathbf{T} denoting the transformation of coordinates from the end-effector frame to the base frame. Thus, T contains the pose of the end-effector.

DECOUPLED MANIPOLATORS

Decoupled manipolators are those whose last three joints have intersecting axes.
These joints, then, constitute the wrist of the manipulator, which is said to be spherical, because when the point of intersection C is kept fixed, all the points of the wrist move on spheres centered at C.

Geometry of Decoupled Serial Robots

DECOUPLED MANIPOLATORS

In terms of the DH parameters of the manipulator, in a decoupled manipulator:

$$
a_{4}=a_{5}=b_{5}=0
$$

Thus the origins of frames 5 and 6 are coincident. For decoupled manipulators we conduct the displacement analysis by decoupling the positioning problem from the orientation problem

THE POSITIONING PROBLEM

Let C denote the intersection of axes 4,5 , and 6 , i.e., the center of the spherical wrist, and let c denote the position vector of this point. The position of C is independent of joint angles θ_{4}, θ_{5}, and θ_{6}; hence, only the first three joints are to be considered for this analysis.

THE POSITIONING PROBLEM

From the figure we have:

$$
\mathbf{a}_{1}+\mathbf{Q}_{1} \mathbf{a}_{2}+\mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{a}_{3}^{\prime \prime}+\mathbf{x}_{\mathbf{3}} \mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{3} \mathbf{a}_{4}=\mathbf{c}
$$

(Expressed in \mathcal{F}_{1}-coordinates)
This equation can be readily rewritten in the form:

$$
\mathbf{a}_{2}+\mathbf{Q}_{2} \mathbf{a}_{3}+\mathbf{Q}_{2} \mathbf{Q}_{3} \mathbf{a}_{4}=\mathbf{Q}_{1}{ }^{T}\left(\mathbf{c}-\mathbf{a}_{1}\right)
$$

THE POSITIONING PROBLEM

If we recall that $\mathbf{a}_{i}=\mathbf{Q}_{i} \mathbf{b}_{i}$, the previuos equation becomes:

$$
\mathbf{Q}_{2}\left(\mathbf{b}_{2}+\mathbf{Q}_{3} \mathbf{b}_{3}+\mathbf{Q}_{3} \mathbf{Q}_{4} \mathbf{b}_{4}\right)=\mathbf{Q}_{1}^{T} \mathbf{c}-\mathbf{b}_{1}
$$

Since we are dealing with a decoupled manipulator, we have:

$$
\mathbf{a}_{4}=\mathbf{Q}_{4} \mathbf{b}_{4}=\left[\begin{array}{c}
0 \\
0 \\
b_{4}
\end{array}\right]=b_{4} \mathbf{e}
$$

Thus the product $\mathrm{Q}_{3} \mathrm{Q}_{4} \mathrm{~b}_{4}$ reduces to:

$$
\mathbf{Q}_{3} \mathbf{Q}_{4} \mathbf{b}_{4}=b_{4} \mathbf{Q}_{3} \mathbf{e}=b_{4} \mathbf{u}_{3}
$$

THE POSITIONING PROBLEM

Hence:

$$
\mathbf{Q}_{2}\left(\mathbf{b}_{2}+\mathbf{Q}_{3} \mathbf{b}_{3}+b_{4} \mathbf{u}_{3}\right)=\mathbf{Q}_{1}^{T} \mathbf{c}-\mathbf{b}_{1}
$$

Further, an expression for can be derived in terms of \mathbf{p}, the position vector of the operation point of the $E E$, and \mathbf{Q}, namely,

$$
\mathbf{c}=\mathbf{p}-\mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{3} \mathbf{Q}_{4} \mathbf{a}_{5}-\mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{3} \mathbf{Q}_{4} \mathbf{Q}_{5} \mathbf{a}_{6}
$$

Since:

$$
\begin{gathered}
a_{4}=a_{5}=b_{5}=0 \text { and } \mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{3} \mathbf{Q}_{4} \mathbf{Q}_{5} \mathbf{Q}_{6}=\mathbf{Q} \mathbf{Q}_{6}^{\mathrm{T}} \\
\mathbf{c}=\mathbf{p}-\mathbf{Q} \mathbf{Q}_{6}{ }^{T} \mathbf{a}_{6}=\mathbf{p}-\mathbf{Q} \mathbf{b}_{6}
\end{gathered}
$$

THE POSITIONING PROBLEM

The \mathcal{F}_{1}-components of P and C position vectors are defined as:

$$
[\boldsymbol{p}]_{1}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad[\mathbf{c}]_{1}=\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]
$$

so $\mathbf{c}=\mathbf{p}-\mathbf{Q} \mathbf{Q}_{6}{ }^{T} \mathbf{a}_{6}=\mathbf{p}-\mathbf{Q} b_{6}$ can be expanded in the form:

$$
\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
x-\left(q_{11} a_{6}+q_{12} b_{6} \mu_{6}+q_{13} b_{6} \lambda_{6}\right) \\
y-\left(q_{21} a_{6}+q_{22} b_{6} \mu_{6}+q_{23} b_{6} \lambda_{6}\right) \\
z-\left(q_{31} a_{6}+q_{32} b_{6} \mu_{6}+q_{33} b_{6} \lambda_{6}\right)
\end{array}\right]
$$

THE POSITIONING PROBLEM

In solving the foregoing system of equations, we first note that in this equation

$$
\mathbf{Q}_{2}\left(\mathbf{b}_{2}+\mathbf{Q}_{3} \mathbf{b}_{3}+\mathrm{b}_{4} \mathbf{u}_{3}\right)=\mathbf{Q}_{1}{ }^{T} \mathbf{c}-\mathbf{b}_{1}
$$

- the left-hand side of this equation appears multiplied by

$$
\mathbf{Q}_{2} ;
$$

- θ_{2} does not appear in in the right-hand side.

This implies that

- if the Euclidean norms of the two sides of that equation are equated, the resulting equation will not contain θ_{2}
- the third scalar equation of the same equation is independent of θ_{2}

THE POSITIONING PROBLEM

If we denote by l the left-hand of the equation (1) and by r its right-hand side, then we have:

$$
\begin{aligned}
& l^{2} \equiv b_{2}{ }^{2}+b_{3}{ }^{2}+{b_{4}}^{2}+2 \mathbf{b}_{2}{ }^{T} \mathbf{Q}_{3} \mathbf{b}_{3}+2 b_{4} \mathbf{b}_{2}{ }^{T} \mathbf{u}_{3}+2 \lambda_{3} b_{3} \\
& r^{2} \equiv\|\mathbf{c}\|^{2}+\left\|\mathbf{b}_{1}\right\|^{2}-2 \mathbf{b}_{1}{ }^{T} \mathbf{Q}_{1}{ }^{T} \mathbf{c}
\end{aligned}
$$

From which it is apparent that l^{2} is linear in \mathbf{x}_{3} and r^{2} is linear in \mathbf{x}_{1}.
Upon equating l^{2} with r^{2}, then, an equation linear in \mathbf{x}_{1} and \mathbf{x}_{3} is readily derived, namely

$$
A c_{1}+B s_{1}+C c_{3}+D s_{3}+E=0
$$

THE POSITIONING PROBLEM

$$
A c_{1}+B s_{1}+C c_{3}+D s_{3}+E=0
$$

Whose coefficients do not contain any unknown:
$A=2 a_{1} x_{c}$
$B=2 a_{1} y_{C}$
$C=2 a_{2} a_{3}-2 b_{2} b_{4} \mu_{2} \mu_{3}$
$D=2 a_{3} b_{2} \mu_{2}+2 b_{2} b_{4} \mu_{2} \mu_{3}$
$E={a_{2}}^{2}+a_{3}{ }^{2}+b_{2}{ }^{2}+b_{3}{ }^{2}+b_{4}{ }^{2}-a_{1}{ }^{2}-x_{c}{ }^{2}-y_{c}{ }^{2}$
$-\left(z_{c}-b_{1}\right)^{2}+2 b_{2} b_{3} \lambda_{3}+2 b_{2} b_{4} \lambda_{2} \lambda_{3}+2 b_{3} b_{4} \lambda_{3}$

THE POSITIONING PROBLEM

Moreover, the third scalar equation of equation (1) takes on the form:

$$
F c_{1}+G s_{1}+H c_{3}+I s_{3}+J
$$

Where:
$F=y_{c} \mu_{1}$
$G=-x_{c} \mu_{1}$
$H=-b_{4} \mu_{2} \mu_{3}$
$I=a_{3} \mu_{2}$
$J=b_{2}+b_{3} \lambda_{2}+b_{4} \lambda_{2} \lambda_{3}-\left(z_{c}-b_{1}\right) \lambda_{1}$

THE POSITIONING PROBLEM

The two above equations, can be solved for c_{3} and s_{3}, namely:

$$
\begin{aligned}
& c_{1}=\frac{-G\left(C c_{3}+D s_{3}+E\right)+B\left(H c_{3}+I s_{3}+J\right)}{\Delta_{1}} \\
& s_{1}=\frac{F\left(C c_{3}+D s_{3}+E\right)-A\left(H c_{3}+I s_{3}+J\right)}{\Delta_{1}}
\end{aligned}
$$

Where Δ_{1} is defined as:

$$
\Delta_{1}=A G-F B=-2 a_{1} \mu_{1}\left(x_{c}^{2}+y_{c}^{2}\right)
$$

THE POSITIONING PROBLEM

Both sides of previous equations are squared, the squares thus obtained are then added, and the sum is equated to 1 , which leads to a quadratic equation in \mathbf{x}_{3}, namely:

$$
K c_{3}^{2}+L s_{3}^{2}+M c_{3} s_{3}+N c_{3}+P s_{3}+Q=0
$$

whose coefficients are given below:
$K=\left(4 a_{1}{ }^{2} H^{2}+\mu_{1}{ }^{2} C^{2}\right)$
$L=\left(4 a_{1}{ }^{2} I^{2}+\mu_{1}{ }^{2} D^{2}\right)$
$M=2\left(4 a_{1}{ }^{2} H I+\mu_{1}{ }^{2} C D\right)$
$N=2\left(4 a_{1}{ }^{2} H J+\mu_{1}{ }^{2} C E\right)$
$P=2\left(4 a_{1}{ }^{2} I J+\mu_{1}{ }^{2} D E\right)$
$Q=\left(4 a_{1}{ }^{2} J^{2}+\mu_{1}{ }^{2} E^{2}-4 a_{1}{ }^{2} \mu_{1}{ }^{2} \rho^{2}\right)$
Where: $\rho^{2}=x_{c}^{2}+y_{c}^{2}$

THE POSITIONING PROBLEM

Now, two well-known trigonometric identities are introduced, namely,
$c_{3} \equiv \frac{1-\tau_{3}^{2}}{1+\tau_{3}^{2}} \quad$ e $\quad s_{3} \equiv \frac{2 \tau_{3}}{1+\tau_{3}^{2}} \quad$ con $\quad \tau_{3} \equiv \tan \left(\frac{\theta_{3}}{2}\right)$
Upon substitution of the foregoing identities, a quartic equation in τ_{3} is obtained, i.e.

$$
R \tau_{3}^{4}+S \tau_{3}^{3}+T \tau_{3}^{2}+U \tau_{3}+V=0
$$

THE POSITIONING PROBLEM

After some simplifications, these coefficients take on the forms:
$R=\left[4 a_{1}^{2}(J-H)^{2}+\mu_{1}^{2}(E-C)^{2}-4 \rho^{2} a_{1}^{2} \mu_{1}^{2}\right]$
$S=4\left[4 a_{1}^{2} I\left[(J-H)+\mu_{1}^{2} D(E-C)\right]\right.$
$T=2\left[4 a_{1}^{2}\left(J^{2}-H^{2}+2 I^{2}\right)+2 \mu_{1}^{2}\left(E^{2}-C^{2}+2 D^{2}\right)-4 \rho^{2} a_{1}^{2} \mu_{1}^{2}\right]$
$U=4\left[4 a_{1}^{2} I(H+J)+\mu_{1}^{2} D(C+E)\right]$
$V=\left[4 a_{1}^{2}(J+H)^{2}+\mu_{1}^{2}(E+C)^{2}-4 \rho^{2} a_{1}^{2} \mu_{1}^{2}\right]$
Thus, up to four possible values of θ_{3} can be obtained, namely,

$$
\left(\theta_{3}\right)_{i}=2 \arctan \left[\left(\tau_{3}\right)_{i}\right] \quad i=1,2,3,4
$$

THE POSITIONING PROBLEM

Once the four values of θ_{3} are available, each of these is substituted in eq. (2)and (3), which produce four different values of θ_{1}.
For each value of θ_{1} and θ_{3}, one value of θ_{2} can be computed from the first two scalar equations of eq.(1), which are displayed below:
$A_{11} \cos \theta_{2}+A_{12} \operatorname{sen} \theta_{2}=x_{c} \cos \theta_{1}+y_{c} \operatorname{sen} \theta_{1}-a_{1}$
$A_{12} \cos \theta_{2}+A_{11} \operatorname{sen} \theta_{2}=-x_{c} \lambda_{1} \operatorname{sen} \theta_{1}+y_{c} \lambda_{1} \cos \theta_{1}+\left(z_{c}-b_{1}\right) \mu_{1}$ Where:

$$
\begin{gathered}
A_{11}=a_{2}+a_{3} \cos \theta_{3}+b_{4} \mu_{3} \operatorname{sen} \theta_{3} \\
A_{12}=-a_{3} \lambda_{2} \operatorname{sen} \theta_{3}+b_{3} \mu_{2}+b_{4} \lambda_{2} \mu_{3} \cos \theta_{3}+b_{4} \mu_{2} \lambda_{3}
\end{gathered}
$$

THE POSITIONING PROBLEM

 If A_{11} and A_{12} do not vanish simultaneously, angle θ_{2} is readily computed as:$\operatorname{Cos} \theta_{2}=$

$$
\begin{aligned}
& \frac{1}{\Delta_{2}}\left\{\mathrm{~A}_{11}\left(\mathrm{x}_{\mathrm{c}} \cos \theta_{1}+\mathrm{y}_{\mathrm{c}} \operatorname{sen} \theta_{1}-\mathrm{a}_{1}\right)\right. \\
& \left.-\mathrm{A}_{12}\left[-\mathrm{x}_{\mathrm{c}} \lambda_{1} \operatorname{sen} \theta_{1}+\mathrm{y}_{\mathrm{c}} \lambda_{1} \cos \theta_{1}+\left(\mathrm{z}_{\mathrm{c}}-\mathrm{b}_{1}\right) \mu_{1}\right]\right\}
\end{aligned}
$$

$\operatorname{Sen} \theta_{2}=$

$$
\frac{1}{\Delta_{2}}\left\{\mathrm{~A}_{12}\left(\mathrm{x}_{\mathrm{c}} \cos \theta_{1}+\mathrm{y}_{\mathrm{c}} \operatorname{sen} \theta_{1}-\mathrm{a}_{1}\right)\right.
$$

Where:

$$
\Delta_{2}=A_{11}^{2}+A_{12}^{2}
$$

THE POSITIONING PROBLEM

The four arm configurations for the positioning problem of the Puma Robot are:

(a) and (b):elbow down; (c) and (d): elbow up;
(a) and (c):shoulder fore; (b) and (d):shoulder aft.

THE ORIENTATION PROBLEM

This problem consists in determining the wrist angles that will produce a prescribed orientation of the EE. This orientation is given in terms of the rotation matrix Q taking the EE from its home attitude to its current one. Alternatively, the orientation can be given by the natural invariants of the rotation matrix, vector e and angle φ.

$$
\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right\} \quad \Longrightarrow\left\{\begin{array}{l}
\mathbf{Q}_{1} \\
\mathbf{Q}_{2} \\
\mathbf{Q}_{3}
\end{array}\right\} \quad \Longrightarrow\left\{\begin{array}{l}
\theta_{4} \\
\theta_{5} \\
\theta_{6}
\end{array}\right\}
$$

THE ORIENTATION PROBLEM

Now, since the orientation of the end-effector is given, we know the components of vector \mathbf{e}_{6} in any coordinate frame. In particular, let

$$
\left[\mathbf{e}_{6}\right]_{4}=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right] \text { and }\left[\mathbf{e}_{5}\right]_{4}=\left[\begin{array}{c}
\mu_{4} \operatorname{sen} \theta_{4} \\
-\mu_{4} \cos \theta_{4} \\
\lambda_{4}
\end{array}\right]
$$

Vectors \mathbf{e}_{5} and \mathbf{e}_{6} make an angle α_{5}, and hence:

$$
\left[\mathbf{e}_{6}\right]_{4}^{T}\left[\mathbf{e}_{5}\right]_{4}=\lambda_{5}
$$

THE ORIENTATION PROBLEM

Upon substitution of $\left[e_{6}\right]_{4}$ and $\left[e_{5}\right]_{4}$ in the last equation, we obtain:

$$
\xi \mu_{4} \operatorname{sen} \theta_{4}-\eta \mu_{4} \cos \theta_{4}+\zeta \lambda_{4}=\lambda_{5}
$$

which can be readily transformed, with the aid of the tan-half-angle identities, into a quadratic equation in $\tau_{4}=\tan \frac{\theta_{4}}{2}$

$$
\left(\lambda_{5}-\eta \mu_{4}-\zeta \lambda_{4}\right) \tau_{4}^{2}-2 \xi \mu_{4} \tau_{4}+\left(\lambda_{5}+\eta \mu_{4}-\zeta \lambda_{4}\right)=0
$$

$$
\tau_{4}=\xi \mu_{4} \pm \frac{\sqrt{\left(\xi^{2}+\eta^{2}\right) \mu_{4}^{2}-\left(\lambda_{5}-\zeta \lambda_{4}\right)^{2}}}{\lambda_{5}-\zeta \lambda_{4}-\eta \mu_{4}}
$$

THE ORIENTATION PROBLEM

If $\mathbf{Q}_{4} \mathbf{Q}_{5} \mathbf{Q}_{6}=\mathbf{R}$ with \mathbf{R} defined as: $\mathbf{R}=\mathbf{Q}_{3}^{T} \mathbf{Q}_{2}^{T} \mathbf{Q}_{1}^{T} \boldsymbol{Q}$
Expressions for θ_{5} and θ_{6} can be readily derived by solving first for $\mathbf{Q}_{5,}$, namely:

$$
\mathbf{Q}_{5}=\mathbf{Q}_{4}^{T} \mathbf{R} \mathbf{Q}_{6}^{T}
$$

Thus, two equations for θ_{5} are obtained by equating the first two components of the third columns of that equation, thereby obtaining:

THE ORIENTATION PROBLEM

Thus, two equations for θ_{5} are obtained by equating the first two components of the third columns of that equation, thereby obtaining:

$$
\begin{aligned}
& \mu_{5} s_{5}=\left(\mu_{6} r_{12}+\lambda_{6} r_{13}\right) c_{4}+\left(\mu_{6} r_{22}+\lambda_{6} r_{23}\right) s_{4} \\
& -\mu_{5} c_{5}=-\lambda_{4}\left(\mu_{6} r_{12}+\lambda_{6} r_{13}\right) s_{4}+\lambda_{4}\left(\mu_{6} r_{22}+\lambda_{6} r_{23}\right) c_{4}+ \\
& \mu_{4}\left(\mu_{6} r_{32}+\lambda_{6} r_{33}\right)
\end{aligned}
$$

$$
s_{5} c_{5} \Rightarrow \theta_{5}
$$

which thus yield a unique value of θ_{5} for every value of θ_{4},

THE ORIENTATION PROBLEM

Finally, with θ_{4} and θ_{5} known, it is a simple matter to calculate θ_{6}. This is done upon solving for \mathbf{Q}_{6} from:

$$
\mathbf{Q}_{6}=\mathbf{Q}_{5}^{T} \mathbf{Q}_{4}^{T} \mathbf{R}
$$

Hence, c_{6} and s_{6} are determined as:

$$
\left\{\begin{array}{c}
c_{6}=\omega_{1} c_{5}+\omega_{2} s_{5} \\
s_{6}=-\omega_{1} \lambda_{5} s_{5}+\omega_{2} \lambda_{5} c_{5}+\omega_{3} \mu_{5}
\end{array}\right.
$$

THE ORIENTATION PROBLEM

When combined with the four postures of a decoupled manipulator leading to one and the same location of its wrist center- positioning problem - a maximum of eight possible combinations of joint angles for a single pose of the end-effector of a decoupled manipulator are found

