
KINETOSTATICS OF 

SERIAL ROBOTS



VELOCITY ANALYSIS OF SERIAL 

MANIPULATORS

We consider the manipulator of Figure in which a joint

coordinate θi, a joint rate  𝜃𝑖 , and a unit vector ei are

associated with each revolute axis.
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VELOCITY ANALYSIS OF SERIAL 

MANIPULATORS
The Xi, Yi, Zi coordinate frame, attached to the (i−1)st

link, is not shown, but its origin Oi is indicated.

If the angular-velocity vector of the ith link is denoted by

ωi then we have
𝝎0 = 𝟎

𝝎1 =  𝜃1𝐞1
𝝎2 =  𝜃1𝐞1 +  𝜃2𝐞2

…
…
…

𝝎𝑛 =  𝜃1𝐞1 +  𝜃2𝐞2 +⋯+  𝜃𝑛𝐞𝑛
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VELOCITY ANALYSIS OF SERIAL 

MANIPULATORS
If the angular velocity of the EE is denoted by ω then:

𝝎 = 𝝎𝑛 =  𝜃1𝐞1 +  𝜃2𝐞2 +⋯+  𝜃𝑛𝐞𝑛 = 

1

𝑛

 𝜃𝑖𝐞𝑖

Likewise one readily derives

𝐩 = 𝐚1 + 𝐚2 +⋯+ 𝐚𝑛
where p denotes the position vector of point P of the

EE. Upon differentiating both sides of equation, we

have:

 𝐩 =  𝐚1 +  𝐚2 +⋯+  𝐚𝑛
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VELOCITY ANALYSIS OF SERIAL 

MANIPULATORS
Considering that  𝐚𝑖 = 𝛚𝑖 × 𝐚𝑖
We can rearrange the foregoing equation as:

 𝐩 = 

𝑖

𝑛

 𝜃𝑖𝐞𝑖 × 𝐫𝑖

Where vector ri is defined as that joining Oi with P, 

directed from the former to the latter, as:

𝐫𝑖 ≡ 𝐚𝑖 + 𝐚𝑖+1 +⋯+ 𝐚𝑛
Let A and B denote the 3xn matrices defined as:

𝑨 = 𝐞1 𝐞2 ⋯ 𝐞𝑛

𝐁 = 𝐞1 × 𝐫1 𝐞2 × 𝐫2 ⋯ 𝐞𝑛 × 𝐫𝑛
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VELOCITY ANALYSIS OF SERIAL 

MANIPULATORS
Furthermore, the n-dimensional joint-rate vector  𝜽 is defined

as:

 𝜽 ≡

 𝜃1
 𝜃2
…
…
 𝜃𝑛

Thus, ω and  p can be expressed in a more compact form as:

𝝎 = 𝑨  𝜽  𝐩 = 𝑩  𝜽
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VELOCITY ANALYSIS OF SERIAL 

MANIPULATORS
The twist of the EE being defined as:

𝐭 =
𝝎
 𝐩

The EE twist is thus nearly related to the joint-rate

vector  𝜽 as: 𝑱  𝜽 = 𝐭
where J is the Jacobian matrix defined as the 6xn matrix

shown below

𝐉 =
𝐀
𝐁

Moreover, if ji denotes the ith column of J, one has

𝐣𝑖 =
𝐞𝑖

𝐞𝑖 × 𝐫𝑖
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VELOCITY ANALYSIS OF 

SERIAL MANIPULATORS

Vector ai joining the origins of the ith and (i+1)st frames is

no longer of constant magnitude but undergoes a change

of magnitude along the axis of the prismatic pair.

𝝎𝑖 = 𝝎𝑖−1

 𝐚𝑖 = 𝝎𝑖−1 × 𝐚𝑖 +  𝑏𝑖𝐞𝑖
One can readily prove, in this case, that

𝝎 =  𝜃1𝐞1 +  𝜃2𝐞2 +⋯+  𝜃𝑖−1𝐞𝑖−1 +  𝜃𝑖+1𝐞𝑖+1 +⋯+  𝜃𝑛𝐞𝑛
 𝐩 =  𝜃1𝐞1 × 𝐫1 +⋯+  𝜃𝑖−1𝐞𝑖−1 × 𝐫𝑖−1 +  𝑏𝑖

 𝐞𝑖 +  𝜃𝑖+1𝐞𝑖+1 × 𝐫𝑖+1 +⋯+  𝜃𝑛𝐞𝑛 × 𝐫𝑛
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VELOCITY ANALYSIS OF SERIAL 

MANIPULATORS
From which it is apparent that the relation between the

twist of the EE and the joint-rate vector is formally

identical to that appearing in 𝐉  𝜽 = 𝐭 if vector  𝜽 is defined

as:

 𝜽 =  𝜃1,  𝜃2, … ,  𝜃𝑖−1,  𝑏𝑖  , 𝜃𝑖+1 , … ,  𝜃𝑛
𝑇

and the ith column of J changes to:

𝐣𝑖 =
0
𝐞𝑖

In particular, for six-axis manipulators, J is a 6 × 6 matrix.
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VELOCITY ANALYSIS OF 

SERIAL MANIPULATORS
Whenever this matrix is nonsingular, can be solved for 
 𝜽, namely,

 𝜽 = 𝑱−1𝐭
 𝜽 is computed using a numerical procedure. The most

suitable is the Gauss-elimination algorithm known as

LU decomposition.

Gaussian elimination produces the solution by

recognizing that system of linear equations in most

easily solved when it is in either upper or lower

triangular form.
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VELOCITY ANALYSIS OF SERIAL 

MANIPULATORS
Matrix J is factored into the unique L and U factors in the 

form:

𝐉 = 𝐋𝐔

Where L is the lower and U is the upper triangular. Moreover, 

they have the forms:

𝐋 =

1 0 … 0
𝑒21 1 … 0
…
𝑒𝑛1

…
𝑒𝑛2

…
…

…
1

𝐔 =

1 𝑒12 … 𝑒𝑛
0 𝑒22 … 𝑒2𝑛…
0

…
0

…
…

…
1

Thus, the unknown vector of joint rates can now be computed

from two triangular systems, namely,

𝐋𝐲 = 𝐭 𝐔  𝜽 = 𝒚
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VELOCITY ANALYSIS OF 

SERIAL MANIPULATORS
The latter equations are then solved, first for y and then

for  𝜽 , by application of only forward and backward

substitutions, respectively

𝐲 = 𝐋−1𝐭  𝜽 = 𝐔−1𝐲

Thus, the solution of a system of n linear equations in n

unknowns, using the LU-decomposition method, can be

accomplished with Mn multiplications and An additions, as

given below

𝑀𝑛 =
𝑛

6
2𝑛2 + 9𝑛 + 1 𝐴𝑛 =

𝑛

3
(𝑛2 + 3𝑛 − 4)
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VELOCITY ANALYSIS OF SERIAL 

MANIPULATORS

Hence, the velocity resolution of a six-axis

manipulator of arbitrary architecture requires M6

multiplications and A6 additions, as given below:

𝑀6 = 127 𝐴6 = 100
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DECOUPLED MANIPULATORS
For manipulators with this type of architecture, it is

more convenient to deal with the velocity of the

center C of the wrist than with that of the operation

point P.

𝐭𝐶 = 𝐉  𝜽

where tC is defined as: 𝐭𝐶 =
𝝎
 𝐜

and can be obtained from 𝐭𝑃 =
𝝎
 𝐩 using the twist-

transfer formula:

𝐭𝐶 =
𝟏 𝐎

𝐏 − 𝐂 𝟏
𝐭𝑃
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DECOUPLED MANIPULATORS
With C and P defined as the cross-product matrices of the

position vectors c and p, respectively.

If in general, JA denotes the Jacobian defined for a point A of

the EE and JB that defined for another point B, then the

relation between JA and JB is:

𝐉𝐵 = 𝐔𝐉𝐴
where the 6×6 matrix U is defined as:

𝐔 =
𝟏 𝐎

𝐀 − 𝐁 𝟏
Then: det 𝐉𝐵 = det(𝐉𝐴)

So we have proven that the determinat of the Jacobian matrix

of a six-axis manipulator is not affected under a change of

operation point of the EE.
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Since C is on the last three joint axes, its velocity is not

affected by the motion of the last three joints, and we can

write:

 𝐜 =  𝜃1𝐞1 × 𝐫1 +  𝜃2𝐞2 × 𝐫2 +  𝜃3𝐞3 × 𝐫3
𝝎 =  𝜃1𝐞1 +  𝜃2𝐞2 +  𝜃3𝐞3 +  𝜃4𝐞4 +  𝜃5𝐞5 +  𝜃6𝐞6

the Jacobian takes on the following simple form:

𝐉 =
𝐉11 𝐉12
𝐉21 𝐎

Where: 𝐉11= 𝐞1 𝐞2 𝐞3
𝐉12 = [𝐞4 𝐞5 𝐞6]
𝐉21= [𝐞1 × 𝐫1 𝐞2 × 𝐫2 𝐞3 × 𝐫3]
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DECOUPLED MANIPULATORS
Further, vector  𝜽 is partitioned accordingly:

 𝜽 =
 𝜽𝑎
 𝜽𝑤

Where:

 𝜽𝑎 =

 𝜃1
 𝜃2
 𝜃3

 𝜽𝑤 =

 𝜃4
 𝜃5
 𝜃6

Henceforth, the three components of  𝜽𝑎 will be

referred to as the arm rates, whereas those of  𝜽𝑤will

be called the wrist rates.
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DECOUPLED MANIPULATORS

 
𝐉11  𝜽𝑎 + 𝐉12  𝛉𝑤 = 𝝎

𝐉21  𝜽𝑎 =  𝐜

 
𝐉21  𝜃𝑎 =  𝐜

𝐉12  𝜽𝑤 = 𝝎− 𝐉11  𝜽𝑎
===⇒  

 𝜽𝑎 = 𝐉21
−1  𝐜

 𝜽𝑤 = 𝐉12
−1(𝛚 − 𝑱11  𝜽𝑎)

Now, if we recall the concept of reciprocal bases, the

above inverses can be represented explicitly:

Δ21 = det 𝐉21 = 𝐞1 × 𝐫1 × 𝐞2 × 𝐫2 × 𝐞3 × 𝐫3
Δ12 = 𝐞4 × 𝐞5 × 𝐞6
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DECOUPLED MANIPULATORS
Then:

𝐽21
−1 =

1

Δ21

𝐞2 × 𝐫2 × 𝐞3 × 𝐫3
𝑇

𝐞3 × 𝐫3 × 𝐞1 × 𝐫1
𝑇

𝐞1 × 𝐫1 × 𝐞2 × 𝐫2
𝑇

𝐽12
−1 =

1

Δ12

𝐞5 × 𝐞6
𝑇

𝐞6 × 𝐞4
𝑇

𝐞4 × 𝐞5
𝑇

Therefore:

 𝛉𝑎 =
1

Δ21

𝐞2 × 𝐫2 × 𝐞3 × 𝐫3 ∙  𝐜

𝐞3 × 𝐫3 × 𝐞1 × 𝐫1 ∙  𝐜

𝐞1 × 𝐫1 × 𝐞2 × 𝐫2 ∙  𝐜

and if we let:  𝝎 = 𝝎− 𝐉11  𝜃𝑎

 𝜽𝑤 =
1

Δ21

𝐞5 × 𝐞6 ∙  𝝎
𝐞6 × 𝐞4 ∙  𝝎
𝐞4 × 𝐞5 ∙  𝝎
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SINGULARITY ANALYSIS OF 

DECOUPLED MANIPULATORS

J12 Non 
Singular

J21
Singular

No 
Solution

J12
Singular

J21 non 
singular

No 
Solution
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ACCELERATION ANALYSIS OF 

SERIAL MANIPULATORS
Deriving 𝐉  𝜽 = 𝒕, we have: 

𝐉  𝜽 =  𝐭 −  𝐉  𝜽
 𝜽 = 𝐉−1(  𝐭 −  𝐉  𝜽)

It is apparent that the joint-acceleration vector is

computed in exactly the same way as the joint-rate vector.

In fact, the LU decomposition of J is the same in this case

and hence, need not be recomputed. All that is needed is

the solution of a lower- and an upper-triangular system,

namely,

𝐋𝐳 =  𝐭 −  𝐉  𝜃 𝐔  𝜽 = 𝒛
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ACCELERATION ANALYSIS OF 

SERIAL MANIPULATORS

The two foregoing systems are solved first for z and

then for  𝜽 by forward and backward substitution,

respectively.

Thus, the total numbers of multiplications Mt and

additions At that the forward and backward solutions

of the aforementioned systems require are:

𝑀𝑡 = 𝑛2 𝐴𝑡 = 𝑛(𝑛 − 1)
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SERIAL MANIPULATORS

𝐉  𝜽 =  𝐭 −  𝐉  𝜽

The right-hand side comprises two terms, the first

being the specified time-rate of change of the twist of

the EE, or twist-rate, for brevity, which is readily

available. The second term is not available and must be

computed. This term involves the product of the time-

derivative of J times the previously computed joint-rate

vector. Hence, in order to evaluate the right-hand side

of that equation, all that is further required is  𝑱
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SERIAL MANIPULATORS

 𝐉 =
 𝐀
 𝐁

Where:  𝐀 =  𝐞1  𝐞2 ⋯  𝐞𝑛
 𝐁 =  𝐮1  𝐮2 ⋯  𝐮𝑛

and ui denotes 𝐞𝑖 × 𝐫𝑖, for i = 1, 2, . . . , n. Moreover:

 𝐞1 = 𝝎0 × 𝐞1 = 𝟎
 𝐞𝑖 = 𝝎𝑖−1 × 𝐞𝑖 = 𝝎𝑖 × 𝐞𝑖
 𝐮𝑖 =  𝐞𝑖 × 𝐫𝑖 + 𝐞𝑖 ×  𝐫𝑖
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ACCELERATION ANALYSIS OF 

SERIAL MANIPULATORS
Differentiating we obtain:

 𝐫𝑖 =  𝐚i +  𝐚𝑖+1 +⋯+  𝐚𝑛
Recalling the above equation reduces to

 𝐫𝑖 = 𝝎𝑖 × 𝐚𝑖 +𝝎𝑖+1 × 𝐚𝑖+1 +⋯+𝝎𝑛 × 𝐚𝑛
Substitution of equations leads to:
 𝐀 = 𝟎 𝝎1 × 𝐞2 ⋯ 𝝎𝑛−1 × 𝐞𝑛
 𝐁 = 𝐞1 ×  𝐫1 𝝎12 × 𝐫2 + 𝒆2 ×  𝐫2 ⋯ 𝝎𝑛−1,𝑛 × 𝐫𝑛 + 𝐞𝑛 ×  𝐫𝑛

With  𝐫𝑘and 𝝎𝑘,𝑘+1 defined as:

 𝐫𝑘 = 

𝑘

𝑛

𝝎𝑖 × 𝐚𝑖 𝝎𝑘,𝑘+1 = 𝝎𝑘 × 𝐞𝑘+1
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ACCELERATION ANALYSIS OF 

SERIAL MANIPULATORS
The foregoing expressions are invariant and hence, valid

in any coordinate frame. All columns of both  𝐀 and  𝐁 will

have to be represented in the samecoordinate frame.

Hence, coordinate transformations will have to be

introduced in the foregoing matrix columns in order

to have all of these represented in the same coordinate

frame,

 𝐉  𝜽 =  𝜃1
𝟎
 𝐮1
+  𝜃2

 𝐞2
 𝐮2
+⋯+  𝜃𝑛

 𝐞𝑛
 𝐮𝑛
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ACCELERATION ANALYSIS OF 

SERIAL MANIPULATORS
Thus, the total numbers of multiplications and additions

required to compute  𝐉  𝜽in frame ℱ1, denoted by MJ and AJ ,

respectively, are as shown below

𝑀𝐽 = 47𝑛 − 37 𝐴𝐽 = 31𝑛 − 28

The total numbers of multiplications and additions needed to

compute the aforementioned right-hand side, denoted by Mr

and Ar are:

𝑀𝑟 = 47𝑛 − 37 𝐴𝑟 = 31𝑛 − 22

The numbers of multiplications and additions required for an 

acceleration resolution of a 6-R manipulator of arbitrary 

architecture are: 𝑀𝑎 = 281 𝐴𝑎 = 194
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 Displacement Analysis

 Velocity Analysis

 Acceleration Analysis 

 Static analyses.
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the figure



PLANAR MANIPULATORS

Let E be defined as an orthogonal matrix rotating 2-D

vectors through an angle of 90° counterclockwise. Hence:

𝐄 ≡
0 −1
1 0

We thus have

 𝐄−1 = 𝐄𝑇 = −𝐄

 𝐄2 = −1

where 1 is the 2x2 identity matrix.
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DISPLACEMENT ANALYSIS
The inverse kinematics of the manipulator at hand now

consists of determining the values of angles θi, for i = 1, 2,

3, that will place the end-effector so that its operation

point P will be positioned at the prescribed Cartesian

coordinates x, y and be oriented at a given angle  with

the X axis.

We now have, from the geometry of Figure:

𝑎1𝑐1 + 𝑎2𝑐12 = 𝑥𝑐
𝑎1𝑠1 + 𝑎2𝑠12 = 𝑦𝑐
where xc and yc denote the Cartesian coordinates of point O3,

𝑐1= cos 𝜃1 𝑐12 = cos 𝜃1 + 𝜃2 and

𝑠1 = 𝑠𝑒𝑛 𝜃1 𝑠12 = 𝑠𝑒𝑛(𝜃1 + 𝜃2)
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Indeed, from the two foregoing equations we can

eliminate both c12 and s12 by solving for the second terms

of the left-hand sides of those equations, namely

𝑎2𝑐12 = 𝑥𝑐 − 𝑎1𝑐1
𝑎2𝑠12 = 𝑦𝑐 − 𝑎1𝑠1
We obtain, after simplification, a linear equation in c1 and 

s1 that represents a line ℒ in the c1-s1 plane:

ℒ:−𝑎1
2 + 𝑎2

2 + 2𝑎1𝑥𝑐𝑐1 + 2𝑎1𝑦𝑐𝑠1 − 𝑥𝑐
2 + 𝑦𝑐

2 = 0

Clearly, the two foregoing variables are constrained by a

quadratic equation defining a circle C in the same plane:

𝑐1
2 + 𝑠1

2 = 1
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DISPLACEMENT ANALYSIS

The real roots of interest are then obtained as the intersections

of ℒ and C. Thus, the problem can admit:

 Two real and distinct roots, if the line and the circle intersect;

 One repeated root if the line is tangent to the circle;

 No real root if the line does not intersect the circle
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DISPLACEMENT ANALYSIS
With c1 and s1 known, angle θ1 is fully determined. Note

that the two real intersections of ℒ with C provide each

one value of θ1, as depicted in Figure.

θ2 is derived from θ1 as follows:

𝜃2 𝑖 = tan−1
𝑦𝑐 − 𝑎1 𝑠1 𝑖

𝑥𝑐 − 𝑎1 𝑐1 𝑖
− 𝜃1 𝑖

Once θ1 and θ2 are available, θ3 is readily derived from the

geometry:

𝜃3 = 𝜙 − 𝜃1 + 𝜃2
Hence, each pair of (θ1 θ2) values yields one single value

for θ3. Since we have two such pairs, the problem admits

two real solutions
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VELOCITY ANALYSIS
The velocity relation adapted to planar manipulators 

are:

𝐉  𝜽 = 𝐭
Where:

𝐽 ≡
𝐞1 𝐞2 𝐞3

𝐞1 × 𝐫1 𝐞2 × 𝐫2 𝐞3 × 𝐫3
,  𝜽 ≡

 𝜃1
 𝜃2
 𝜃3

, 𝐭 ≡
𝛚
 𝐩

And where and {ri }are defined as the vectors directed from

Oi to P : 𝐫𝑖 =
𝑥𝑖
𝑦𝑖
0

i=1,2,3
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VELOCITY ANALYSIS
We assume here that the manipulator moves in the X-

Y plane, and hence:

𝐞1 = 𝐞2 = 𝐞3 = 𝐞 =
0
0
1

And with t reducing to :

𝐭 = 0 0  𝜙  𝑥𝑝  𝑦𝑝 0
𝑇

in which  𝑥𝑝 and  𝑦𝑝denote the components of the 

velocity of P.
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VELOCITY ANALYSIS

Thus 𝐞i × 𝐫𝑖 =
−𝑦𝑖
𝑥𝑖
0

=
𝑬 𝐬𝑖
0

The equation 𝐉  𝜽 = 𝐭 reduces to :
𝟎 𝟎 𝟎
1 1 1
𝐄𝐬1 𝐄𝐬2 𝐄𝐬3
0 0 0

 𝜃1
 𝜃2
 𝜃3

=

𝟎
 𝜙
 𝐩
0

Where:  p =  𝑥  𝑦 𝑇

Multiplying the first row for Es1 and subtracting the latter to 

the second:

1 1 1
0 𝐄(𝐬2 − 𝐬1) 𝐄(𝐬3 − 𝐬1)

 𝜃1
 𝜃2
 𝜃3

=
 𝜙

 𝐩 −  𝜙𝐄𝐬1
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VELOCITY ANALYSIS

This system can be reduced to only two equations

[𝐄 𝐬2 − 𝐬1 𝐄(𝐬3 − 𝐬1)]
 𝜃2
 𝜃3
=  𝐩 −  𝜙𝐄𝐬1

From these equations we can get the two unknowns:

 𝜃2 =
𝐬3 − 𝐬1

𝑇  𝐩 −  𝜙𝐄𝐬1
𝐬2 − 𝐬1

𝑇𝐄 𝐬3 − 𝐬1

 𝜃3 =
𝐬2 − 𝐬1

𝑇  𝐩 −  𝜙𝐄𝐬1
𝐬2 − 𝐬1

𝑇𝐄 𝐬3 − 𝐬1
 𝜃1 =  𝜙 − (  𝜃1 +  𝜃2)
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ACCELERATION ANALYSIS 

Differentiating the equation 𝐉  𝜽 = 𝐭 we obtain:

𝐉  𝜽 +  𝐉  𝜽 =  𝐭

Similarly to the previous case we can proceed as 

follows:

𝐉  𝜽 =  𝐭 −  𝐉  𝜽

Where:

 𝐉 =
0 0 0
𝑬  𝒔1 𝑬  𝒔2 𝑬  𝒔3

,  𝜽 =

 𝜃1
 𝜃2
 𝜃3

,  𝐭 =
 𝜙
 𝐩
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ACCELERATION ANALYSIS 
Considering only two equations (as seen before) we can 

write:

𝐄 𝒔2 − 𝐬1 𝐄 𝐬3 − 𝐬1
 𝜃2
 𝜃3
= 𝐰

where w is defined as:

𝐰 =  𝐩 − 𝐄(  𝜃1𝐬1 +  𝜃2𝐬2 +  𝜃3𝐬3 +  𝜙𝐬1)
So we can determine the accelerations, which are:

 𝜃2 =
𝐬3 − 𝐬1

𝑇𝐰

Δ

 𝜃3 =
𝐬2 − 𝐬1

𝑇𝐰

Δ
 𝜃1 =  𝜙 − (  𝜃2 +  𝜃3)
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STATIC ANALYSIS
External actions acting on EE of a manipulator can 

always attributable to a couple n and to a force f. We can 

represent them into a single vector 

𝐰 =
𝑛
𝐟

If additionally, we denote by τ the 3-D vector of joint 

torques.

𝐉𝑇𝐰 = 𝝉

Where

𝐉𝑇 =

1 𝐄𝐬1
𝑇

1 𝐄𝐬2
𝑇

1 𝐄𝐬3
𝑇
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STATIC ANALYSIS
We subtract the first scalar equation from the second and 

the third scalar equations, which renders the foregoing 

system in the form

1 𝐄𝐬1
𝑇

0 𝐄 𝐬2 − 𝑠1
𝑇

0 𝐄 𝐬3 − 𝐬1
𝑇

𝑛
𝐟

=

𝜏1
𝜏2 − 𝜏1
𝜏3 − 𝜏1

The last two equations have been decoupled from the first

one, which allows us to solve them separately. we have

reduced the system to one of two equations in two

unknowns, namely

𝐄 𝐬2 − 𝐬1
𝑇

𝐄 𝐬3 − 𝐬1
𝑇 𝐟 =

𝜏2 − 𝜏1
𝜏3 − 𝜏2
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STATIC ANALYSIS
From which we readily obtain:

𝐟 =
𝐄 𝐬2 − 𝐬1

𝑇

𝐄 𝐬3 − 𝐬1
𝑇

−1
𝜏2 − 𝜏1
𝜏3 − 𝜏2

and hence, upon expansion of the above inverse

𝐟 =
1

Δ
(𝜏2−𝜏1 𝐬3 − 𝐬1 − (𝜏3 − 𝜏1)(𝐬2 − 𝐬1)]

Finally, the resultant moment n acting on the EE is

readily calculated from the first scalar equation of the

system as:

𝑛 = 𝜏1 + 𝐬1
𝑇𝐄𝐟
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