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The Modeling of Single/n dof Mechanical Systems

:

Some lumped-parameter elements 

of mechanical systems



• INGREDIENTS OF A TECHNIQUE MULTIBODY

- A SET OF GENERALIZED COORDINATES.

- A METHOD TO DESCRIBE THE TOPOLOGY OF THE SYSTEM AND THE 
INTERCONNECTIONS BETWEEN THE BODIES.

- THE INERTIAL PROPERTIES OF THE MASSES AND A LAW OF MOTION 

- A MATHEMATICAL TOOL TO SOLVE THE EQUATIONS.



technique multibody
1. Principles of Dynamics
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The Newton-Euler equations:

Principle of virtual work and the principle of d'Alembert:

Hamilton's principle:

Lagrange equations: Other principles of Dynamics

• Principle of Gauss

• Principle of Gibbs-Jourdain

• Principle Hertz



technique multibody
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2 formalisms of multibody dynamics
The various formalisms used in the generation of the equations of motion can

be classified by different criteria:

1. Criterion based on the principles of dynamics used.

• Eulerian methods 

• Lagrangian methods

• generalized Lagrangian methods (Gibbs, Jourdain, Kane, etc. ..)

2. Criterion based on the type of the variable used to represent the system’s motion 

• generalized coordinates which refer to the absolute motion of the masses,

or to an inertial reference frame.

• generalized coordinates which refer to the relative motion between the bodies

interacting.

3. Criterion which involves the number of equations used. 

•  The set of equations is redundant. You have a lot of equations, but in simple

algebraic form. The solution provides not only information on the bike, but 

also on the forces of constraint. 

• The equations, in number strictly necessary, have a complex algebraic 

structure and are strongly couple



technique multibody: 
3. Position of a body in the plane
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- (X, Y) inertial cartesian coordinates of a 

generic point of the body;

- (x, y) local Cartesian coordinates of the point 

above;

- (q3i-2, q3i-1, q3i) generalized coordinates of 

the 'body i.

We have:



technique multibody: 
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4 Kinematic Constraints
The kinematic constraints can be classified into two categories:

• Structural constraints (scleronomi)

Those due to the presence of the kinematic pairs or particular constraints

that do not vary over time. These constraints depend only on the coordinates

generalized and the geometry of the system.

- Revolute pair

- Prismatic pair

- Higher torque (e.g. cam-assignor)

- Torque Gear

- Constraints distance

• Constraints of motion (reonomi)

Those due to kinematic laws of motion prescribed to members motives.

In these constraints the time variable t appears explicitly.

Exist many constraints as there are degrees of freedom of motion of the system.



Kinematic analysis: Method of constraint’s equations
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Analysis of the positions

vector of the motion constraints

vector of structural constraints

Analysis of the velocity

Jacobian matrix
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Kinematic analysis: Method of constraint’s equations

mathematical details:



Revolute pair
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Revolute pair
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Revolute pair
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Revolute pair
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Prismatic pair
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Prismatic pair
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Prismatic pair
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Prismatic pair
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UPPER KINEMATIC PAIRS
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With reference to Figure 4, introduced a system of axes Cartesian Pi - xikyik

oriented like that or - xiyi, the coordinates point M of the generic profile Ci,

belonging to the body i, are given by parametric equations:



UPPER KINEMATIC PAIRS
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Coincidence between the Cartesian coordinates of the point M, considered as

belonging both the body and the body j:

Orthogonality of {ni} and {tj}:

the tangent to Ci in M appears to be parallel to the vector

if



UPPER KINEMATIC PAIRS
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The normal ni to Ci in M is parallel to the vector obtained from the product

where

The following transformations provide the components in O-XY tangent and normal 

vectors to Ci in M
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UPPER KINEMATIC PAIRS
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where



Pair with gears
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Polar of the relative motion between the members i and j

Substituting the relations:

is obtained

where



Pair with gears

 Then we have:

 For integration of the latter will obtain the constraint equation

 where q03i, q03j, q03k are the initial angular positions of the members i, j 

and k, respectively.
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The elements of the Jacobian matrix associated to this constraint are:

The element of the vector g relative to this constraint is always null.

Pair with gears



Constraint on distance
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Constraint on distance

 Row of the Jacobian matrix
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The element of the vector g relative to this constraint is:



Other constraints on the distances

 Constraint variable distance between two points;

 Constraints on the difference between the ordinates;

 Constraints on the difference between the x-axis;

 Constraints on the difference between angular positions;
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Applications: robotic manipulator to 2 g.d.l.
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Applications: robotic manipulator to 2 g.d.l.
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Example more…
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Summary kinematic analysis

 The kinematic analysis is reduced to the solution of the following systems of 

equations:

 For various constraints were deducted constraint equations for various pairs

kinematics, the elements of the Jacobian matrix and the g.
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Formulation of the equations of dynamics
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Hamilton's principle:

Lagrange equations:

where



Minimization of constraintsfunction
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Having used a number of coordinates higher than that of dof, the 

Lagrangian function

will be subject to the constraint equations of the generalized coordinates
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Method of Lagrange multipliers

For L(q1, q2) subject to PSI(q1, q2) = 0

From mathematical analysis, the conditions of stationarity to turn out 

to be:



Method of Lagrange multipliers
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minimum Euclidean norm:

EXAMPLE:  a linear system of equations in which [A] is a rectangular matrix with fewer 

rows than columns:

Applying the condition of stazionarity.

We have:



Method of Lagrange multipliers

Moreover:
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the algebraic solution of constrained optimization problem



Extended Lagrangian
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[M] is the mass matrix;

{Fe} is the generalized vector of force;

• [PSIq]T is the transposed Jacobian matrix associated with the 

system of

equations

Applying the Lagrange equations;



Extended Lagrangian
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Or

Complete system



Extended Lagrangian
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Numerical solutions



Computational artifice
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Solution:



Inverse dynamics

For inverse dynamics analysis refers to the calculation of the driving 

forces and those of constraint compatible with a prescribed kinematic 

state of the mechanical system.
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- {q}: the vector of the generalized coordinates (3 for each body)

- [PSIq]: is the Jacobian matrix of the constraints (scleronomi and reonomi);

- {lamda} is the vector of Lagrange multipliers associated with the above-mentioned 

constraints;

- {Fe}: is the vector of external forces;

- {Qa(q, q˙,lamda)}: is the vector of possible friction forces in the revolute pairs,

prismatic and gear.



Flow-chart of the analysis of inverse 

dynamics
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Applications: Simple pendulum
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Applications: 

Simple pendulum
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Applications: Simple pendulum
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Mass-spring system

Sistemi Meccanici 46 / 9



Mass-spring system
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Mass matrix
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Calculation of vector generalized forces{Fe}
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Spring-damper-element linear actuator
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Spring-damper-element linear actuator

 L = AB

 - k : Stiffness coefficient;

 - c : damping coefficient (viscoso);

 - Fa : law of arbitrary force;

 - dAB = AB.
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Element spring-damper-actuator angular
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Application
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Application
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Application

Sistemi Meccanici 55 / 9

If q3=3,1415/4 and L=1, then



Application
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Application
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Application
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For t=0:


